\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Benilov-Vynnycky blow-up problem

Abstract / Introduction Related Papers Cited by
  • We study an initial-boundary value problem for a fourth-order parabolic partial differential equation with an unknown velocity. The equation originated from the linearization of a two-dimensional Couette flow model, that was recently proposed by Benilov and Vynnycky. In the case of a $180^{\circ}$-- contact angle between liquid and a moving plate Benilov and Vynnycky conjectured that the speed of the contact line blows up to infinity in finite time. In this paper we present numerical simulations and qualitative analysis of the model. We show that depending on the initial data and parameter values different long time behaviors of velocity can be observed. The speed of the contact line may blow up to infinity or converge to a constant.
    Mathematics Subject Classification: Primary: 76D08, 35K30; Secondary: 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. J. Ablowitz and J. Villarroel, On the Kadomtsev-Petviashvili equation and associated constraints, Stud. Appl. Math., 85 (1991), 195-213.

    [2]

    E. S. Benilov, On the surface waves in a shallow channel with an uneven bottom, Stud. Appl. Math., 87 (1992), 1-14.

    [3]

    D. J. Benney and W. J. Timson, The rolling motion of a viscous fluid on and off a rigid surface, Stud. Appl. Math, 63 (1980), 93-98.

    [4]

    E. S. Benilov and M. Vynnycky, Contact lines with a $180^{\circ}$ contact angle, J. Fluid Mech., 718 (2013), 481-506.

    [5]

    B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15 (970), 539-541.

    [6]

    L. A. Ostrovskii, Nonlinear internal waves in the rotating ocean, Okeanologiia, 18 (1978), 181-191.

    [7]

    D. E. Pelinovsky and A. R. Giniyatullin, Finite-time singularities in the dynamical evolution of contact lines, Bulletin of the Moscow State Regional University (Physics and Mathematics), 3 (2013), 14-24.

    [8]

    D. E. Pelinovsky, A. R. Giniyatullin and Y. A. Panfilova, On solutions of the reduced model for the dynamical evolution of contact lines, Transactions of Nizhni Novgorod State Technical University n.a. Alexeev N.4, 94 (2012), 45-60.

    [9]

    D. E. Pelinovsky and C. Xu, On numerical modelling and the blow-up behavior of contact lines with a $180^{\circ}$ contact angle, J. Engineer. Math., 2015.doi: 10.1007/s10665-014-9763-9.

    [10]

    J. Le Sommer, G. M. Reznik and V. Zeitlin, Nonlinear geostrophic adjustment of long-wave disturbances in the shallow-water model on the equatorial beta-plane, Journal of Fluid Mechanics, 515 (2004), 135-170.doi: 10.1017/S0022112004000229.

    [11]

    M. Vynnycky and S. L. Mitchell, On the accuracy of a finite-difference method for parabolic partial differential equations with discontinuous boundary conditions, Num. Heat Trans B, 64 (2013), 275-292.doi: 10.1080/10407790.2013.797312.

    [12]

    S. L. Mitchell and M. Vynnycky, On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions, J. Comp. Appl. Maths, 264 (2014), 49-64.doi: 10.1016/j.cam.2014.01.003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return