July  2015, 20(5): 1461-1480. doi: 10.3934/dcdsb.2015.20.1461

A free boundary problem for aggregation by short range sensing and differentiated diffusion

1. 

King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

2. 

Courant Institute of Mathematical Sciences, New York University (NYU), 251 Mercer Street, New York, N.Y. 10012-1185, United States

Received  January 2014 Revised  November 2014 Published  May 2015

On the $d$-dimensional torus we consider the drift-diffusion equation, where the diffusion coefficient may take one of two possible values depending on whether the locally sensed density is below or above a given threshold. This can be interpreted as an aggregation model for particles like insect populations or freely diffusing proteins which slow down their dynamics within dense aggregates. This leads to a free boundary model where the free boundary separates densely packed aggregates from areas with a loose particle concentration.
    The paper has a rigorous part and a formal part. In the rigorous part we prove existence of solutions to the distributional formulation of the model. In the second, formal, part we derive the strong formulation of the model including the free boundary conditions and characterize stationary solutions giving necessary conditions for the emergence of stationary plateaus. We conclude that stationary aggregation plateaus in this situation are either spherical, complements of sphericals or stripes, which has implications for biological applications.
    Finally, numerical simulations in one and two dimensions are used to give evidence for the long time convergence to stationary states which feature aggregations.
Citation: Jan Haškovec, Dietmar Oelz. A free boundary problem for aggregation by short range sensing and differentiated diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1461-1480. doi: 10.3934/dcdsb.2015.20.1461
References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and sard-type properties of lipschitz maps,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 12 (2013), 863.   Google Scholar

[2]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179.  doi: 10.1142/S0218202511005702.  Google Scholar

[3]

C. Brangwynne, C. Eckmann, D. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher and A. Hyman, Germline p granules are liquid droplets that localize by controlled dissolution/condensation,, Science, 324 (2009), 1729.  doi: 10.1126/science.1172046.  Google Scholar

[4]

M. Burger, J. Haškovec and M.-T. Wolfram, Individual based and mean-field modeling of direct aggregation,, Physica D: Nonlinear Phenomena., ().  doi: 10.1016/j.physd.2012.11.003.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,, 2nd edition, (2010).   Google Scholar

[6]

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behaviour, 69 (2005), 169.  doi: 10.1016/j.anbehav.2004.02.009.  Google Scholar

[7]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of mathematics: Stochastic modelling and applied probability, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[8]

H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations,, in Stochastic Differential Equations (Lecture Series in Differential Equations, (1967), 41.   Google Scholar

[9]

A.-S. Sznitman, Topics in propagation of chaos,, in Ecole d'Eté de Probabilités de Saint-Flour XIX - 1989 (ed. P.-L. Hennequin), (1991), 165.  doi: 10.1007/BFb0085169.  Google Scholar

[10]

L. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations,, Cornell University, (1996).   Google Scholar

show all references

References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and sard-type properties of lipschitz maps,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 12 (2013), 863.   Google Scholar

[2]

F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming,, Math. Models Methods Appl. Sci., 21 (2011), 2179.  doi: 10.1142/S0218202511005702.  Google Scholar

[3]

C. Brangwynne, C. Eckmann, D. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher and A. Hyman, Germline p granules are liquid droplets that localize by controlled dissolution/condensation,, Science, 324 (2009), 1729.  doi: 10.1126/science.1172046.  Google Scholar

[4]

M. Burger, J. Haškovec and M.-T. Wolfram, Individual based and mean-field modeling of direct aggregation,, Physica D: Nonlinear Phenomena., ().  doi: 10.1016/j.physd.2012.11.003.  Google Scholar

[5]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,, 2nd edition, (2010).   Google Scholar

[6]

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches,, Animal Behaviour, 69 (2005), 169.  doi: 10.1016/j.anbehav.2004.02.009.  Google Scholar

[7]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of mathematics: Stochastic modelling and applied probability, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[8]

H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations,, in Stochastic Differential Equations (Lecture Series in Differential Equations, (1967), 41.   Google Scholar

[9]

A.-S. Sznitman, Topics in propagation of chaos,, in Ecole d'Eté de Probabilités de Saint-Flour XIX - 1989 (ed. P.-L. Hennequin), (1991), 165.  doi: 10.1007/BFb0085169.  Google Scholar

[10]

L. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations,, Cornell University, (1996).   Google Scholar

[1]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[2]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations & Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[3]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

[4]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[5]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[6]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033

[8]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[9]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[10]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[11]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[12]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[13]

Serena Dipierro, Aram Karakhanyan, Enrico Valdinoci. Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6073-6090. doi: 10.3934/dcds.2018262

[14]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

[15]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[16]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[17]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[18]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[19]

Matthias Eller. Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1347-1361. doi: 10.3934/dcdsb.2018154

[20]

Maria Alessandra Ragusa. Parabolic systems with non continuous coefficients. Conference Publications, 2003, 2003 (Special) : 727-733. doi: 10.3934/proc.2003.2003.727

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]