July  2015, 20(5): 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

The improved results on the stochastic Kolmogorov system with time-varying delay

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074

Received  November 2013 Revised  December 2014 Published  May 2015

This paper discusses the stochastic Kolmogorov system with time-varying delay. Under two classes of sufficient conditions, this paper solves the non-explosion, the moment boundedness and the polynomial pathwise growth simultaneously. This is an important improvement for the existing results, since the moment boundedness and the polynomial pathwise growth do not imply each in general. Moreover, these two classes of conditions only depends on the parameters of the system and are easier to be used. Finally, a two-dimensional Komogorov model is examined to illustrate the efficiency of our result.
Citation: Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481
References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.  doi: 10.1016/j.jmaa.2003.12.004.  Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, International Journal of Pure and Applied Mathematics, 11 (2004), 377.   Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays,, Acta Applicandae Mathematicae, 110 (2010), 1407.  doi: 10.1007/s10440-009-9517-2.  Google Scholar

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays,, Journal of Applied Mathematics and Computing, 38 (2012), 257.  doi: 10.1007/s12190-011-0477-0.  Google Scholar

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay,, Nonlinear Analysis, 75 (2012), 405.  doi: 10.1016/j.na.2011.08.042.  Google Scholar

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays,, Journal of Mathematical Analysis and Applications, 375 (2011), 42.  doi: 10.1016/j.jmaa.2010.08.017.  Google Scholar

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays,, Applied Mathematics and Computation, 219 (2013), 6946.  doi: 10.1016/j.amc.2012.12.073.  Google Scholar

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Process and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching,, Imperial Collage Press, (2006).  doi: 10.1142/p473.  Google Scholar

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics,, Journal of Mathematical Analysis and Applications, 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay,, Stochastic Models, 25 (2009), 129.  doi: 10.1080/15326340802646286.  Google Scholar

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system,, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309.  doi: 10.1017/S0308210509000237.  Google Scholar

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system,, IMA Journal of Applied Mathematics, 75 (2010), 317.  doi: 10.1093/imamat/hxq025.  Google Scholar

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

show all references

References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.  doi: 10.1016/j.jmaa.2003.12.004.  Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, International Journal of Pure and Applied Mathematics, 11 (2004), 377.   Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays,, Acta Applicandae Mathematicae, 110 (2010), 1407.  doi: 10.1007/s10440-009-9517-2.  Google Scholar

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays,, Journal of Applied Mathematics and Computing, 38 (2012), 257.  doi: 10.1007/s12190-011-0477-0.  Google Scholar

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay,, Nonlinear Analysis, 75 (2012), 405.  doi: 10.1016/j.na.2011.08.042.  Google Scholar

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays,, Journal of Mathematical Analysis and Applications, 375 (2011), 42.  doi: 10.1016/j.jmaa.2010.08.017.  Google Scholar

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays,, Applied Mathematics and Computation, 219 (2013), 6946.  doi: 10.1016/j.amc.2012.12.073.  Google Scholar

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Process and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching,, Imperial Collage Press, (2006).  doi: 10.1142/p473.  Google Scholar

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics,, Journal of Mathematical Analysis and Applications, 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay,, Stochastic Models, 25 (2009), 129.  doi: 10.1080/15326340802646286.  Google Scholar

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system,, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309.  doi: 10.1017/S0308210509000237.  Google Scholar

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system,, IMA Journal of Applied Mathematics, 75 (2010), 317.  doi: 10.1093/imamat/hxq025.  Google Scholar

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

[1]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[2]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[3]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[4]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[5]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[6]

Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095

[7]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098

[8]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[9]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[10]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050

[11]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[12]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[13]

Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056

[14]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[15]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[16]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[17]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[18]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[19]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[20]

Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]