July  2015, 20(5): 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

The improved results on the stochastic Kolmogorov system with time-varying delay

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074

Received  November 2013 Revised  December 2014 Published  May 2015

This paper discusses the stochastic Kolmogorov system with time-varying delay. Under two classes of sufficient conditions, this paper solves the non-explosion, the moment boundedness and the polynomial pathwise growth simultaneously. This is an important improvement for the existing results, since the moment boundedness and the polynomial pathwise growth do not imply each in general. Moreover, these two classes of conditions only depends on the parameters of the system and are easier to be used. Finally, a two-dimensional Komogorov model is examined to illustrate the efficiency of our result.
Citation: Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481
References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292 (2004), 364-380. doi: 10.1016/j.jmaa.2003.12.004.

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics, International Journal of Pure and Applied Mathematics, 11 (2004), 377-400.

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611971262.

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays, Acta Applicandae Mathematicae, 110 (2010), 1407-1428. doi: 10.1007/s10440-009-9517-2.

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays, Journal of Applied Mathematics and Computing, 38 (2012), 257-278. doi: 10.1007/s12190-011-0477-0.

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay, Nonlinear Analysis, 75 (2012), 405-416. doi: 10.1016/j.na.2011.08.042.

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays, Journal of Mathematical Analysis and Applications, 375 (2011), 42-57. doi: 10.1016/j.jmaa.2010.08.017.

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays, Applied Mathematics and Computation, 219 (2013), 6946-6964. doi: 10.1016/j.amc.2012.12.073.

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics, Stochastic Process and their Applications, 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching, Imperial Collage Press, 2006. doi: 10.1142/p473.

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320. doi: 10.1016/j.jmaa.2004.09.027.

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603-620.

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay, Stochastic Models, 25 (2009), 129-150. doi: 10.1080/15326340802646286.

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM Journal on Applied Mathematics, 70 (2009), 641-657. doi: 10.1137/080719194.

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309-1334. doi: 10.1017/S0308210509000237.

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system, IMA Journal of Applied Mathematics, 75 (2010), 317-332. doi: 10.1093/imamat/hxq025.

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system, Journal of Mathematical Analysis and Applications, 364 (2010), 104-118. doi: 10.1016/j.jmaa.2009.10.072.

show all references

References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292 (2004), 364-380. doi: 10.1016/j.jmaa.2003.12.004.

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics, International Journal of Pure and Applied Mathematics, 11 (2004), 377-400.

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611971262.

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays, Acta Applicandae Mathematicae, 110 (2010), 1407-1428. doi: 10.1007/s10440-009-9517-2.

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays, Journal of Applied Mathematics and Computing, 38 (2012), 257-278. doi: 10.1007/s12190-011-0477-0.

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay, Nonlinear Analysis, 75 (2012), 405-416. doi: 10.1016/j.na.2011.08.042.

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays, Journal of Mathematical Analysis and Applications, 375 (2011), 42-57. doi: 10.1016/j.jmaa.2010.08.017.

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays, Applied Mathematics and Computation, 219 (2013), 6946-6964. doi: 10.1016/j.amc.2012.12.073.

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics, Stochastic Process and their Applications, 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching, Imperial Collage Press, 2006. doi: 10.1142/p473.

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320. doi: 10.1016/j.jmaa.2004.09.027.

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603-620.

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay, Stochastic Models, 25 (2009), 129-150. doi: 10.1080/15326340802646286.

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM Journal on Applied Mathematics, 70 (2009), 641-657. doi: 10.1137/080719194.

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309-1334. doi: 10.1017/S0308210509000237.

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system, IMA Journal of Applied Mathematics, 75 (2010), 317-332. doi: 10.1093/imamat/hxq025.

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system, Journal of Mathematical Analysis and Applications, 364 (2010), 104-118. doi: 10.1016/j.jmaa.2009.10.072.

[1]

Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with time-varying weight and time-varying delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 523-553. doi: 10.3934/dcdsb.2021053

[2]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[3]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[4]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[5]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[6]

Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095

[7]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[8]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[9]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[10]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098

[11]

Xin-Guang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515). Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1493-1494. doi: 10.3934/dcds.2021161

[12]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[13]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[14]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[15]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[16]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[17]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[18]

Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

[19]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[20]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]