July  2015, 20(5): 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

The improved results on the stochastic Kolmogorov system with time-varying delay

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074

Received  November 2013 Revised  December 2014 Published  May 2015

This paper discusses the stochastic Kolmogorov system with time-varying delay. Under two classes of sufficient conditions, this paper solves the non-explosion, the moment boundedness and the polynomial pathwise growth simultaneously. This is an important improvement for the existing results, since the moment boundedness and the polynomial pathwise growth do not imply each in general. Moreover, these two classes of conditions only depends on the parameters of the system and are easier to be used. Finally, a two-dimensional Komogorov model is examined to illustrate the efficiency of our result.
Citation: Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481
References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.  doi: 10.1016/j.jmaa.2003.12.004.  Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, International Journal of Pure and Applied Mathematics, 11 (2004), 377.   Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays,, Acta Applicandae Mathematicae, 110 (2010), 1407.  doi: 10.1007/s10440-009-9517-2.  Google Scholar

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays,, Journal of Applied Mathematics and Computing, 38 (2012), 257.  doi: 10.1007/s12190-011-0477-0.  Google Scholar

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay,, Nonlinear Analysis, 75 (2012), 405.  doi: 10.1016/j.na.2011.08.042.  Google Scholar

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays,, Journal of Mathematical Analysis and Applications, 375 (2011), 42.  doi: 10.1016/j.jmaa.2010.08.017.  Google Scholar

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays,, Applied Mathematics and Computation, 219 (2013), 6946.  doi: 10.1016/j.amc.2012.12.073.  Google Scholar

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Process and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching,, Imperial Collage Press, (2006).  doi: 10.1142/p473.  Google Scholar

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics,, Journal of Mathematical Analysis and Applications, 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay,, Stochastic Models, 25 (2009), 129.  doi: 10.1080/15326340802646286.  Google Scholar

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system,, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309.  doi: 10.1017/S0308210509000237.  Google Scholar

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system,, IMA Journal of Applied Mathematics, 75 (2010), 317.  doi: 10.1093/imamat/hxq025.  Google Scholar

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

show all references

References:
[1]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model,, Journal of Mathematical Analysis and Applications, 292 (2004), 364.  doi: 10.1016/j.jmaa.2003.12.004.  Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, International Journal of Pure and Applied Mathematics, 11 (2004), 377.   Google Scholar

[3]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[4]

Y. Hu and F. Wu, Stochastic Kolmogorov-type population dynamics with infinite distributed delays,, Acta Applicandae Mathematicae, 110 (2010), 1407.  doi: 10.1007/s10440-009-9517-2.  Google Scholar

[5]

Y. Hu and C. Huang, Lasalle method and general decay stability of stochastic neural networks with mixed delays,, Journal of Applied Mathematics and Computing, 38 (2012), 257.  doi: 10.1007/s12190-011-0477-0.  Google Scholar

[6]

Y. Hu and C. Huang, Existence results and the momentestimate for nonlocal stochastic differential equations with time-varying delay,, Nonlinear Analysis, 75 (2012), 405.  doi: 10.1016/j.na.2011.08.042.  Google Scholar

[7]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays,, Journal of Mathematical Analysis and Applications, 375 (2011), 42.  doi: 10.1016/j.jmaa.2010.08.017.  Google Scholar

[8]

M. Jovanović and M. Vasilova, Dynamics of non-autonomous stochastic Gilpin-Ayala competition model with time-varying delays,, Applied Mathematics and Computation, 219 (2013), 6946.  doi: 10.1016/j.amc.2012.12.073.  Google Scholar

[9]

X. Mao, G. Marion and E. Renshaw, Environmental noise supresses explosion in population dynamics,, Stochastic Process and their Applications, 97 (2002), 95.  doi: 10.1016/S0304-4149(01)00126-0.  Google Scholar

[10]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Swithching,, Imperial Collage Press, (2006).  doi: 10.1142/p473.  Google Scholar

[11]

X. Mao, C. Yuan and J. Zhou, Stochatic differential delay equations of population dynamics,, Journal of Mathematical Analysis and Applications, 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics,, Dynamics of Continuous Discrete and Impulsive Systems Series A, 15 (2008), 603.   Google Scholar

[13]

F. Wu and S. Hu, Stochastic Kolmogorov-type population dynamics with variable delay,, Stochastic Models, 25 (2009), 129.  doi: 10.1080/15326340802646286.  Google Scholar

[14]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay,, SIAM Journal on Applied Mathematics, 70 (2009), 641.  doi: 10.1137/080719194.  Google Scholar

[15]

F. Wu, Unbounded delay stochastic functional Kolmogorov-type system,, Proceedings of the Royal Society of Edinburgh: Section A, 140 (2010), 1309.  doi: 10.1017/S0308210509000237.  Google Scholar

[16]

F. Wu and Y. Hu, Existence and uniqueness of global positive solutions to the stochastic functional Kolmogorov-type system,, IMA Journal of Applied Mathematics, 75 (2010), 317.  doi: 10.1093/imamat/hxq025.  Google Scholar

[17]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system,, Journal of Mathematical Analysis and Applications, 364 (2010), 104.  doi: 10.1016/j.jmaa.2009.10.072.  Google Scholar

[1]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[2]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[11]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[14]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[15]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[16]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]