Citation: |
[1] |
V. Andasari, A. Gerisch, G. Lolas, A. P. South and M. A. J. Chaplain, Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation, J. Math. Biol., 63 (2011), 141-171.doi: 10.1007/s00285-010-0369-1. |
[2] |
A. Aotani, M. Mimura and T. Mollee, A model aided understanding of spot pattern formation in chemotactic E. coli colonies, Jpn. J. Ind. Appl. Math., 27 (2010), 5-22.doi: 10.1007/s13160-010-0011-z. |
[3] |
L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998. |
[4] |
A. Friedman, Partial Differential Equations, Dover Books on Mathematics Series, Dover Publications, Incorporated, 2008. |
[5] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. |
[6] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 633-683 (1998), URL http://www.numdam.org/item?id=ASNSP_1997_4_24_4_633_0. |
[7] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3. |
[8] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. |
[9] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. |
[10] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, 329 (1992), 819-824.doi: 10.1090/S0002-9947-1992-1046835-6. |
[11] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[12] |
O. Ladyzhenskaya, V. Solonnikov and N. Uraltseva, Linear and Quasi-Linear Equations of Parabolic Type, translations of mathematical monographs vol. 23, 1991, American Mathematical Society, Providence, RI. |
[13] |
N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint. |
[14] |
T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.doi: 10.1155/S1025583401000042. |
[15] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433, URL http://www.math.kobe-u.ac.jp/~fe/xml/mr1610709.xml. |
[16] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. TMA, 51 (2002), 119-144.doi: 10.1016/S0362-546X(01)00815-X. |
[17] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[18] |
O. Stancevic, C. N. Angstmann, J. M. Murray and B. I. Henry, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75 (2013), 774-795.doi: 10.1007/s11538-013-9834-5. |
[19] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.doi: 10.1137/13094058X. |
[20] |
Z. Szymańska, C. M. Rodrigo, M. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257-281.doi: 10.1142/S0218202509003425. |
[21] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.doi: 10.1080/03605300701319003. |
[22] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008. |
[23] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.doi: 10.1080/03605300903473426. |
[24] |
M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.doi: 10.1016/j.jmaa.2011.05.057. |
[25] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020. |
[26] |
M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, Journal of Nonlinear Science, 24 (2014), 809-855.doi: 10.1007/s00332-014-9205-x. |