July  2015, 20(5): 1529-1553. doi: 10.3934/dcdsb.2015.20.1529

Convective nonlocal Cahn-Hilliard equations with reaction terms

1. 

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom

2. 

Dipartimento di Matematica, Politecnico di Milano, 20133 Milano

Received  May 2014 Revised  January 2015 Published  May 2015

We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binary alloys with induced reaction and type-I superconductors. The second one is the Cahn-Hilliard type equation introduced by Bertozzi et al. to describe image inpainting. Here we take a free energy functional which accounts for nonlocal interactions. Our choice is motivated by the work of Giacomin and Lebowitz who showed that the rigorous physical derivation of the Cahn-Hilliard equation leads to consider nonlocal functionals. The equations also have a transport term with a given velocity field and are subject to a homogenous Neumann boundary condition for the chemical potential, i.e., the first variation of the free energy functional. We first establish the well-posedness of the corresponding initial and boundary value problems in a weak setting. Then we consider such problems as dynamical systems and we show that they have bounded absorbing sets and global attractors.
Citation: Francesco Della Porta, Maurizio Grasselli. Convective nonlocal Cahn-Hilliard equations with reaction terms. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1529-1553. doi: 10.3934/dcdsb.2015.20.1529
References:
[1]

A. C. Aristotelous, O. Karakashian and S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2211. doi: 10.3934/dcdsb.2013.18.2211. Google Scholar

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers,, Phys. Rev. A, 41 (1990), 6763. doi: 10.1103/PhysRevA.41.6763. Google Scholar

[3]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equation,, J. Nonlinear Sci., 7 (1997), 475. doi: 10.1007/s003329900037. Google Scholar

[4]

P. W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn-Hilliard equation,, J. Differential Equations, 212 (2005), 235. doi: 10.1016/j.jde.2004.07.003. Google Scholar

[5]

P. W. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation,, J. Math. Anal. Appl., 311 (2005), 289. doi: 10.1016/j.jmaa.2005.02.041. Google Scholar

[6]

A. L. Bertozzi, S. Esedo$\overlineg$lu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation,, IEEE Trans. Image Process., 16 (2007), 285. doi: 10.1109/TIP.2006.887728. Google Scholar

[7]

A. L. Bertozzi, S. Esedo$\overlineg$lu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting,, Multiscale Model. Simul., 6 (2007), 913. doi: 10.1137/060660631. Google Scholar

[8]

S. Bosia, M. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures,, Math. Methods Appl. Sci., 37 (2014), 726. doi: 10.1002/mma.2832. Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1002/9781118788295.ch4. Google Scholar

[10]

J. W. Cahn, On spinodal decomposition,, Acta Met., 9 (1961), 795. doi: 10.1002/9781118788295.ch11. Google Scholar

[11]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional,, SIAM J. Appl. Math., 69 (2009), 1712. doi: 10.1137/080728809. Google Scholar

[12]

R. Choksi, Scaling laws in microphase separation of diblock copolymers,, J. Nonlinear Sci., 11 (2001), 223. doi: 10.1007/s00332-001-0456-y. Google Scholar

[13]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers,, J. Stat. Phys., 113 (2003), 151. doi: 10.1023/A:1025722804873. Google Scholar

[14]

R. Choksi, M. Maras and J. F. Williams, 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions,, SIAM J. Appl. Dyn. Syst., 10 (2011), 1344. doi: 10.1137/100784497. Google Scholar

[15]

L. Cherfils, H. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi-Esedo$\overlineg$lu-Gillette-Cahn-Hilliard equation in image inpainting,, Inverse Probl. Imaging, 9 (2015), 105. Google Scholar

[16]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561. doi: 10.1007/s00032-011-0165-4. Google Scholar

[17]

L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013. doi: 10.3934/dcdsb.2014.19.2013. Google Scholar

[18]

P. Colli, S. Frigeri and M. Grasselli, Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system,, J. Math. Anal. Appl., 386 (2012), 428. doi: 10.1016/j.jmaa.2011.08.008. Google Scholar

[19]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491. doi: 10.1016/0362-546X(94)00205-V. Google Scholar

[20]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Ration. Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803. Google Scholar

[21]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404. doi: 10.1137/S0036141094267662. Google Scholar

[22]

P. C. Fife, Models for phase separation and their mathematics,, Electron. J. Differential Equations, 48 (2000). Google Scholar

[23]

S. Frigeri, C. G. Gal and M. Grasselli, On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, preprint,, WIAS Preprint, 1923 (2014). Google Scholar

[24]

S. Frigeri and M. Grasselli, Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system,, J. Dynam. Differential Equations, 24 (2012), 827. doi: 10.1007/s10884-012-9272-3. Google Scholar

[25]

S. Frigeri and M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials,, Dyn. Partial Differ. Equ., 9 (2012), 273. doi: 10.4310/DPDE.2012.v9.n4.a1. Google Scholar

[26]

H. Gajewski and K. Zacharias, On a nonlocal phase separation model,, J. Math. Anal. Appl., 286 (2003), 11. doi: 10.1016/S0022-247X(02)00425-0. Google Scholar

[27]

C. G. Gal and M. Grasselli, Longtime behavior of nonlocal Cahn-Hilliard equations,, Discrete Contin. Dyn. Syst., 34 (2014), 145. doi: 10.3934/dcds.2014.34.145. Google Scholar

[28]

G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions,, Phys. Rev. Lett., 76 (1996), 1094. doi: 10.1103/PhysRevLett.76.1094. Google Scholar

[29]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits,, J. Stat. Phys., 87 (1997), 37. doi: 10.1007/BF02181479. Google Scholar

[30]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. II. Interface motion,, SIAM J. Appl. Math., 58 (1998), 1707. doi: 10.1137/S0036139996313046. Google Scholar

[31]

S. C. Glotzer, E. A. Di Marzio and M. Muthukumar, Reaction-controlled morphology of phase separating mixtures,, Phys. Rev. Lett., 74 (1995), 2034. doi: 10.1103/PhysRevLett.74.2034. Google Scholar

[32]

Y. Huo, H. Zhang and Y. Yang, Effects of reversible chemical reaction on morphology and domain growth of phase separating binary mixtures with viscosity difference,, Macromol. Theory Simul., 13 (2004), 280. doi: 10.1002/mats.200300021. Google Scholar

[33]

Y. Huo, X. Jiang, H. Zhang and Y. Yang, Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction,, J. Chem. Phys., 118 (2003), 9830. doi: 10.1063/1.1571511. Google Scholar

[34]

T. P. Lodge, Block copolymers: past successes and future challenges,, Macromol. Chem. Phys., 204 (2003), 265. doi: 10.1002/macp.200290073. Google Scholar

[35]

S.-O. Londen and H. Petzeltová, Regularity and separation from potential barriers for a non-local phase-field system,, J. Math. Anal. Appl., 379 (2011), 724. doi: 10.1016/j.jmaa.2011.02.003. Google Scholar

[36]

S.-O. Londen and H. Petzeltová, Convergence of solutions of a non-local phase-field system,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 653. Google Scholar

[37]

P. Mansky, P. Chaikin and E. L. Thomas, Monolayer films of diblock copolymer microdomains for nanolithographic applications,, J. Mater. Sci., 30 (1995), 1987. doi: 10.1007/BF00353023. Google Scholar

[38]

S. Melchionna and E. Rocca, On a nonlocal Cahn-Hilliard equation with a reaction term,, Adv. Math. Sci. Appl., 24 (2014), 461. Google Scholar

[39]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, Handbook of differential equations: evolutionary equations, IV (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[40]

A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation,, J. Appl. Anal. Comput., 1 (2011), 523. Google Scholar

[41]

A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term,, Appl. Anal., 92 (2013), 1308. doi: 10.1080/00036811.2012.671301. Google Scholar

[42]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions,, Comm. Math. Phys., 299 (2010), 45. doi: 10.1007/s00220-010-1094-8. Google Scholar

[43]

C. B. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb type,, Phys. Rev. E, 66 (2002). doi: 10.1103/PhysRevE.66.066108. Google Scholar

[44]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245. doi: 10.1080/03605308908820597. Google Scholar

[45]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers,, Phys. D, 84 (1995), 31. doi: 10.1016/0167-2789(95)00005-O. Google Scholar

[46]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives,, Adv. Math. Sci. Appl., 8 (1998), 965. Google Scholar

[47]

A. Novick-Cohen, The Cahn-Hilliard equation,, Handbook of differential equations: Evolutionary equations, IV (2008), 201. doi: 10.1016/S1874-5717(08)00004-2. Google Scholar

[48]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts,, Macromolecules, 19 (1986), 2621. doi: 10.1021/ma00164a028. Google Scholar

[49]

Y. Oono and S. Puri, Computationally Efficient Modeling of Ordering of Quenched Phases,, Phys. Rev. Lett., 58 (1987), 836. doi: 10.1103/PhysRevLett.58.836. Google Scholar

[50]

G. Schimperna, Global attractors for Cahn-Hilliard equations with nonconstant mobility,, Nonlinearity, 20 (2007), 2365. doi: 10.1088/0951-7715/20/10/006. Google Scholar

[51]

S. Villain Guillot, 1D Cahn-Hilliard equation for modulated phase systems,, J. Phys. A, 43 (2010). Google Scholar

[52]

S. Walheim, E. Schaeffer, J. Mlynek and U. Steiner, Nanophase-separated polymer films as high-performance antireflection coatings,, Science, 283 (1999), 520. doi: 10.1126/science.283.5401.520. Google Scholar

[53]

S. Zheng, Asymptotic behavior of solution to the Cahn-Hilliard equation,, Appl. Anal., 23 (1986), 165. doi: 10.1080/00036818608839639. Google Scholar

show all references

References:
[1]

A. C. Aristotelous, O. Karakashian and S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2211. doi: 10.3934/dcdsb.2013.18.2211. Google Scholar

[2]

M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers,, Phys. Rev. A, 41 (1990), 6763. doi: 10.1103/PhysRevA.41.6763. Google Scholar

[3]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equation,, J. Nonlinear Sci., 7 (1997), 475. doi: 10.1007/s003329900037. Google Scholar

[4]

P. W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn-Hilliard equation,, J. Differential Equations, 212 (2005), 235. doi: 10.1016/j.jde.2004.07.003. Google Scholar

[5]

P. W. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation,, J. Math. Anal. Appl., 311 (2005), 289. doi: 10.1016/j.jmaa.2005.02.041. Google Scholar

[6]

A. L. Bertozzi, S. Esedo$\overlineg$lu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation,, IEEE Trans. Image Process., 16 (2007), 285. doi: 10.1109/TIP.2006.887728. Google Scholar

[7]

A. L. Bertozzi, S. Esedo$\overlineg$lu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting,, Multiscale Model. Simul., 6 (2007), 913. doi: 10.1137/060660631. Google Scholar

[8]

S. Bosia, M. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures,, Math. Methods Appl. Sci., 37 (2014), 726. doi: 10.1002/mma.2832. Google Scholar

[9]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1002/9781118788295.ch4. Google Scholar

[10]

J. W. Cahn, On spinodal decomposition,, Acta Met., 9 (1961), 795. doi: 10.1002/9781118788295.ch11. Google Scholar

[11]

R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional,, SIAM J. Appl. Math., 69 (2009), 1712. doi: 10.1137/080728809. Google Scholar

[12]

R. Choksi, Scaling laws in microphase separation of diblock copolymers,, J. Nonlinear Sci., 11 (2001), 223. doi: 10.1007/s00332-001-0456-y. Google Scholar

[13]

R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers,, J. Stat. Phys., 113 (2003), 151. doi: 10.1023/A:1025722804873. Google Scholar

[14]

R. Choksi, M. Maras and J. F. Williams, 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions,, SIAM J. Appl. Dyn. Syst., 10 (2011), 1344. doi: 10.1137/100784497. Google Scholar

[15]

L. Cherfils, H. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi-Esedo$\overlineg$lu-Gillette-Cahn-Hilliard equation in image inpainting,, Inverse Probl. Imaging, 9 (2015), 105. Google Scholar

[16]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561. doi: 10.1007/s00032-011-0165-4. Google Scholar

[17]

L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013. doi: 10.3934/dcdsb.2014.19.2013. Google Scholar

[18]

P. Colli, S. Frigeri and M. Grasselli, Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system,, J. Math. Anal. Appl., 386 (2012), 428. doi: 10.1016/j.jmaa.2011.08.008. Google Scholar

[19]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491. doi: 10.1016/0362-546X(94)00205-V. Google Scholar

[20]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Ration. Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803. Google Scholar

[21]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility,, SIAM J. Math. Anal., 27 (1996), 404. doi: 10.1137/S0036141094267662. Google Scholar

[22]

P. C. Fife, Models for phase separation and their mathematics,, Electron. J. Differential Equations, 48 (2000). Google Scholar

[23]

S. Frigeri, C. G. Gal and M. Grasselli, On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, preprint,, WIAS Preprint, 1923 (2014). Google Scholar

[24]

S. Frigeri and M. Grasselli, Global and trajectory attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system,, J. Dynam. Differential Equations, 24 (2012), 827. doi: 10.1007/s10884-012-9272-3. Google Scholar

[25]

S. Frigeri and M. Grasselli, Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials,, Dyn. Partial Differ. Equ., 9 (2012), 273. doi: 10.4310/DPDE.2012.v9.n4.a1. Google Scholar

[26]

H. Gajewski and K. Zacharias, On a nonlocal phase separation model,, J. Math. Anal. Appl., 286 (2003), 11. doi: 10.1016/S0022-247X(02)00425-0. Google Scholar

[27]

C. G. Gal and M. Grasselli, Longtime behavior of nonlocal Cahn-Hilliard equations,, Discrete Contin. Dyn. Syst., 34 (2014), 145. doi: 10.3934/dcds.2014.34.145. Google Scholar

[28]

G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions,, Phys. Rev. Lett., 76 (1996), 1094. doi: 10.1103/PhysRevLett.76.1094. Google Scholar

[29]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits,, J. Stat. Phys., 87 (1997), 37. doi: 10.1007/BF02181479. Google Scholar

[30]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. II. Interface motion,, SIAM J. Appl. Math., 58 (1998), 1707. doi: 10.1137/S0036139996313046. Google Scholar

[31]

S. C. Glotzer, E. A. Di Marzio and M. Muthukumar, Reaction-controlled morphology of phase separating mixtures,, Phys. Rev. Lett., 74 (1995), 2034. doi: 10.1103/PhysRevLett.74.2034. Google Scholar

[32]

Y. Huo, H. Zhang and Y. Yang, Effects of reversible chemical reaction on morphology and domain growth of phase separating binary mixtures with viscosity difference,, Macromol. Theory Simul., 13 (2004), 280. doi: 10.1002/mats.200300021. Google Scholar

[33]

Y. Huo, X. Jiang, H. Zhang and Y. Yang, Hydrodynamic effects on phase separation of binary mixtures with reversible chemical reaction,, J. Chem. Phys., 118 (2003), 9830. doi: 10.1063/1.1571511. Google Scholar

[34]

T. P. Lodge, Block copolymers: past successes and future challenges,, Macromol. Chem. Phys., 204 (2003), 265. doi: 10.1002/macp.200290073. Google Scholar

[35]

S.-O. Londen and H. Petzeltová, Regularity and separation from potential barriers for a non-local phase-field system,, J. Math. Anal. Appl., 379 (2011), 724. doi: 10.1016/j.jmaa.2011.02.003. Google Scholar

[36]

S.-O. Londen and H. Petzeltová, Convergence of solutions of a non-local phase-field system,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 653. Google Scholar

[37]

P. Mansky, P. Chaikin and E. L. Thomas, Monolayer films of diblock copolymer microdomains for nanolithographic applications,, J. Mater. Sci., 30 (1995), 1987. doi: 10.1007/BF00353023. Google Scholar

[38]

S. Melchionna and E. Rocca, On a nonlocal Cahn-Hilliard equation with a reaction term,, Adv. Math. Sci. Appl., 24 (2014), 461. Google Scholar

[39]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, Handbook of differential equations: evolutionary equations, IV (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[40]

A. Miranville, Asymptotic behavior of the Cahn-Hilliard-Oono equation,, J. Appl. Anal. Comput., 1 (2011), 523. Google Scholar

[41]

A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term,, Appl. Anal., 92 (2013), 1308. doi: 10.1080/00036811.2012.671301. Google Scholar

[42]

C. B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions,, Comm. Math. Phys., 299 (2010), 45. doi: 10.1007/s00220-010-1094-8. Google Scholar

[43]

C. B. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb type,, Phys. Rev. E, 66 (2002). doi: 10.1103/PhysRevE.66.066108. Google Scholar

[44]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245. doi: 10.1080/03605308908820597. Google Scholar

[45]

Y. Nishiura and I. Ohnishi, Some mathematical aspects of the microphase separation in diblock copolymers,, Phys. D, 84 (1995), 31. doi: 10.1016/0167-2789(95)00005-O. Google Scholar

[46]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives,, Adv. Math. Sci. Appl., 8 (1998), 965. Google Scholar

[47]

A. Novick-Cohen, The Cahn-Hilliard equation,, Handbook of differential equations: Evolutionary equations, IV (2008), 201. doi: 10.1016/S1874-5717(08)00004-2. Google Scholar

[48]

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts,, Macromolecules, 19 (1986), 2621. doi: 10.1021/ma00164a028. Google Scholar

[49]

Y. Oono and S. Puri, Computationally Efficient Modeling of Ordering of Quenched Phases,, Phys. Rev. Lett., 58 (1987), 836. doi: 10.1103/PhysRevLett.58.836. Google Scholar

[50]

G. Schimperna, Global attractors for Cahn-Hilliard equations with nonconstant mobility,, Nonlinearity, 20 (2007), 2365. doi: 10.1088/0951-7715/20/10/006. Google Scholar

[51]

S. Villain Guillot, 1D Cahn-Hilliard equation for modulated phase systems,, J. Phys. A, 43 (2010). Google Scholar

[52]

S. Walheim, E. Schaeffer, J. Mlynek and U. Steiner, Nanophase-separated polymer films as high-performance antireflection coatings,, Science, 283 (1999), 520. doi: 10.1126/science.283.5401.520. Google Scholar

[53]

S. Zheng, Asymptotic behavior of solution to the Cahn-Hilliard equation,, Appl. Anal., 23 (1986), 165. doi: 10.1080/00036818608839639. Google Scholar

[1]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[2]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[3]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[4]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[5]

Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006

[6]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[7]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[8]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[9]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[10]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[11]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[12]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[13]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[14]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[15]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[16]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[17]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[18]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[19]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[20]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]