January  2015, 20(1): 161-171. doi: 10.3934/dcdsb.2015.20.161

Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator

1. 

Department of Mathematics, Kyoto Sangyo University, Kyoto 603, Japan

Received  November 2013 Revised  July 2014 Published  November 2014

This paper investigates the existence of traveling waves and their propagation speeds for the Lotka-Volterra predator-prey reaction-diffusion models with no predator diffusion. We prove the existence of traveling waves with any positive speed. Our mathematical tool is the shooting argument in the phase space based on the Wazewski theorem.
Citation: Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161
References:
[1]

P. L. Chow and W. C. Tam, Periodic and traveling waves solutions to Lotka-Volterra equations with diffusion,, Bull. Math. Biol., 38 (1976), 643. doi: 10.1007/BF02458639.

[2]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biology, 17 (1983), 11. doi: 10.1007/BF00276112.

[3]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $ R^4$,, Trans. American Math. Society, 286 (1984), 557. doi: 10.2307/1999810.

[4]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits,, SIAM. J. Appl. Math., 46 (1986), 1057. doi: 10.1137/0146063.

[5]

C. S. Elton, The Ecology of Invasions by Animals and Plants,, Methuen and Company, (1958). doi: 10.1007/978-94-009-5851-7.

[6]

W. F. Fagan and J. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens,, Amer. Nat., 155 (2000), 238. doi: 10.1086/303320.

[7]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenice, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[8]

P. Hartman, Ordinary Differential Equations,, Wiley and Sons, (1964).

[9]

R. Hengeveld, Dynamics of Biological Invasions,, Chapman and Hall, (1989).

[10]

C.-H. Hsu, C.-R. Yang, T.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems,, J. Differential Equations, 252 (2012), 3040. doi: 10.1016/j.jde.2011.11.008.

[11]

J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model,, J. Math. Biol., 46 (2003), 132. doi: 10.1007/s00285-002-0171-9.

[12]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476. doi: 10.1016/j.chaos.2006.09.039.

[13]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846.

[14]

J. D. Murray, Mathematical Biology,, Springer Verlag, (1989). doi: 10.1007/978-3-662-08539-4.

[15]

M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion,, Bulletin of Mathematical Biology, 63 (2001), 655. doi: 10.1006/bulm.2001.0239.

[16]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford University Press, (1997).

[17]

J. Smaller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0.

[18]

A. I. Volpert, Vitaly A. Volpert and Vladimir A. Volpert, Travelling Wave Solution of Parabolic Systems,, American Mathematical Society, (1994).

show all references

References:
[1]

P. L. Chow and W. C. Tam, Periodic and traveling waves solutions to Lotka-Volterra equations with diffusion,, Bull. Math. Biol., 38 (1976), 643. doi: 10.1007/BF02458639.

[2]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations,, J. Math. Biology, 17 (1983), 11. doi: 10.1007/BF00276112.

[3]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $ R^4$,, Trans. American Math. Society, 286 (1984), 557. doi: 10.2307/1999810.

[4]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits,, SIAM. J. Appl. Math., 46 (1986), 1057. doi: 10.1137/0146063.

[5]

C. S. Elton, The Ecology of Invasions by Animals and Plants,, Methuen and Company, (1958). doi: 10.1007/978-94-009-5851-7.

[6]

W. F. Fagan and J. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St. Helens,, Amer. Nat., 155 (2000), 238. doi: 10.1086/303320.

[7]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenice, 7 (1937), 335. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[8]

P. Hartman, Ordinary Differential Equations,, Wiley and Sons, (1964).

[9]

R. Hengeveld, Dynamics of Biological Invasions,, Chapman and Hall, (1989).

[10]

C.-H. Hsu, C.-R. Yang, T.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems,, J. Differential Equations, 252 (2012), 3040. doi: 10.1016/j.jde.2011.11.008.

[11]

J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model,, J. Math. Biol., 46 (2003), 132. doi: 10.1007/s00285-002-0171-9.

[12]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476. doi: 10.1016/j.chaos.2006.09.039.

[13]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Differential Equations, 171 (2001), 294. doi: 10.1006/jdeq.2000.3846.

[14]

J. D. Murray, Mathematical Biology,, Springer Verlag, (1989). doi: 10.1007/978-3-662-08539-4.

[15]

M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion,, Bulletin of Mathematical Biology, 63 (2001), 655. doi: 10.1006/bulm.2001.0239.

[16]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford University Press, (1997).

[17]

J. Smaller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0.

[18]

A. I. Volpert, Vitaly A. Volpert and Vladimir A. Volpert, Travelling Wave Solution of Parabolic Systems,, American Mathematical Society, (1994).

[1]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[2]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[3]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[4]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[5]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[6]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[7]

P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683

[8]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[9]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[10]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[11]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[12]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[13]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[14]

Sungrim Seirin Lee. Dependence of propagation speed on invader species: The effect of the predatory commensalism in two-prey, one-predator system with diffusion. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 797-825. doi: 10.3934/dcdsb.2009.12.797

[15]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[16]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[17]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[18]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[19]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[20]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]