August  2015, 20(6): 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

Spreading speeds and traveling wave solutions in cooperative integral-differential systems

1. 

Department of Mathematics, University of Louisville, Louisville, KY 40292

2. 

School of Mathematics and Statistical Sciences, Arizona State University, Tempe, AZ 85281

3. 

School of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, United States

Received  November 2013 Revised  February 2015 Published  June 2015

We study a cooperative system of integro-differential equations. It is shown that the system in general has multiple spreading speeds, and when the linear determinacy conditions are satisfied all the spreading speeds are the same and equal to the spreading speed of the linearized system. The existence of traveling wave solutions is established via integral systems. It is shown that when the linear determinacy conditions are satisfied, if the unique spreading speed is not zero then it may be characterized as the slowest speed of a class of traveling wave solutions. Some examples are presented to illustrate the theoretical results.
Citation: Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663
References:
[1]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926.  doi: 10.1103/PhysRevLett.86.926.  Google Scholar

[2]

Y. Jin and X. -Q. Zhao, Spatial dynamics of a periodic population model with dispersal,, Nonlinearity, 22 (2009), 1167.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[3]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear conjecture for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[4]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[5]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Diff. Eqs., 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[6]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[7]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[9]

R. Lui, Biological growth and spread modeled by systems of recursions I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[10]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749.  doi: 10.1137/050636152.  Google Scholar

[11]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.   Google Scholar

[12]

K. Meyer and B. Li, A spatial model of plants with an age-Structured seed bank and juvenile stage,, SIAM. J. Appl. Math., 73 (2013), 1676.  doi: 10.1137/120880501.  Google Scholar

[13]

J. Medlock and M. Kot, Spreading disease: Integral-differential equations old and new,, Math. Biosci., 184 (2003), 201.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[14]

D. Mollison, Dependence of epidemic and population velocities on basic parameters,, Math. Biosci., 107 (1991), 255.  doi: 10.1016/0025-5564(91)90009-8.  Google Scholar

[15]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal,, Bound. Value Probl., 2012 (2012).  doi: 10.1186/1687-2770-2012-120.  Google Scholar

[16]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[17]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[18]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[19]

Z.-X. Yu and R. Yuan, Travelling wave solutions in nonlocal reactiondiffusion systems with delays and applications,, ANZIAM J., 51 (2009), 49.  doi: 10.1017/S1446181109000406.  Google Scholar

[20]

L. Zhang and B. Li, Traveling waves in an integro-differential competition model,, Discrete and Continuous Dynamical Systems-Series B, 17 (2012), 417.  doi: 10.3934/dcdsb.2012.17.417.  Google Scholar

show all references

References:
[1]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926.  doi: 10.1103/PhysRevLett.86.926.  Google Scholar

[2]

Y. Jin and X. -Q. Zhao, Spatial dynamics of a periodic population model with dispersal,, Nonlinearity, 22 (2009), 1167.  doi: 10.1088/0951-7715/22/5/011.  Google Scholar

[3]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear conjecture for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[4]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[5]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Diff. Eqs., 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[6]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[7]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[9]

R. Lui, Biological growth and spread modeled by systems of recursions I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[10]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749.  doi: 10.1137/050636152.  Google Scholar

[11]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.   Google Scholar

[12]

K. Meyer and B. Li, A spatial model of plants with an age-Structured seed bank and juvenile stage,, SIAM. J. Appl. Math., 73 (2013), 1676.  doi: 10.1137/120880501.  Google Scholar

[13]

J. Medlock and M. Kot, Spreading disease: Integral-differential equations old and new,, Math. Biosci., 184 (2003), 201.  doi: 10.1016/S0025-5564(03)00041-5.  Google Scholar

[14]

D. Mollison, Dependence of epidemic and population velocities on basic parameters,, Math. Biosci., 107 (1991), 255.  doi: 10.1016/0025-5564(91)90009-8.  Google Scholar

[15]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal,, Bound. Value Probl., 2012 (2012).  doi: 10.1186/1687-2770-2012-120.  Google Scholar

[16]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814.  doi: 10.1016/j.na.2010.09.032.  Google Scholar

[17]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[18]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[19]

Z.-X. Yu and R. Yuan, Travelling wave solutions in nonlocal reactiondiffusion systems with delays and applications,, ANZIAM J., 51 (2009), 49.  doi: 10.1017/S1446181109000406.  Google Scholar

[20]

L. Zhang and B. Li, Traveling waves in an integro-differential competition model,, Discrete and Continuous Dynamical Systems-Series B, 17 (2012), 417.  doi: 10.3934/dcdsb.2012.17.417.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[16]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]