Citation: |
[1] |
Z. Artstein, Limiting equations and stability of nonautonomous ordinary differential equations, Appendix to J. P. LaSalle, the stability of dynamical systems, in CBMS, Regional Conference Serires in Applied Mathemaitcs, SIAM, Philadelphia, 1976, v+76 pp. |
[2] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Appl. Math., 33 (2002), 1144-1165.doi: 10.1137/S0036141000376086. |
[3] |
G. Caristi, K. Rybakowski and T. Wessolek, Persistence and spatial patterns in a one-predator-two-prey Lotka-Volterra model with diffusion, Annali di Mathematica pura ed applicata, 161 (1992), 345-377.doi: 10.1007/BF01759645. |
[4] |
W. Chen and M. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comp. Modelling, 42 (2005), 31-44.doi: 10.1016/j.mcm.2005.05.013. |
[5] |
S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Int. J. Bifurcation and Chaos, 22 (2012), 1250061, 11pp.doi: 10.1142/S0218127412500617. |
[6] |
S. Chen, J. Shi and J. Wei, The effect of delay on a diffusive predator-prey system with Holling type-II predator functional response, Comm. on Pure and Appl. Analy., 12 (2013), 481-501.doi: 10.3934/cpaa.2013.12.481. |
[7] |
M. G. Crandall and P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977), 53-72.doi: 10.1007/BF00280827. |
[8] |
D. L. DeAngelis, R. A. Goldstein and R. Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892. |
[9] |
Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.doi: 10.1017/S0308210500000895. |
[10] |
H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997), 340-362.doi: 10.1006/jdeq.1997.3264. |
[11] |
S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65 (2005), 550-566.doi: 10.1137/S0036139903436613. |
[12] |
S. A. Gourley and S. Ruan, Dynamics of the diffusive Nicholson's blowflies equation with distributed delay, Proc. R. Soc. A, 130 (2000), 1275-1291.doi: 10.1017/S0308210500000688. |
[13] |
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[14] |
E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.doi: 10.2307/1939378. |
[15] |
D. Kesh, A. K. Sarkar and A. B. Roy, Persistence of two prey-one predator system with ratio-dependent predator influence, Math. Meth. Appl. Sci., 23 (2000), 347-356.doi: 10.1002/(SICI)1099-1476(20000310)23:4<347::AID-MMA117>3.0.CO;2-F. |
[16] |
W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl., 335 (2007), 498-523.doi: 10.1016/j.jmaa.2007.01.089. |
[17] |
W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.doi: 10.1016/j.jde.2006.08.001. |
[18] |
A. Korobeinikov, Stability of ecosystem: Global properties of a general predator-prey model, Mathematical Medicine and Biology, 26 (2009), 309-321.doi: 10.1093/imammb/dqp009. |
[19] |
Z. Lin, Time delayed parabolic system in a two-species competitive model with stage structure, J. Math. Anal. Appl., 315 (2006), 202-215.doi: 10.1016/j.jmaa.2005.06.012. |
[20] |
S. Liu and E. Beretta, Stage-structured Predator-prey Model with the Beddington-DeAngelis functional response, SIAM J. Appl. Math., 66 (2006), 1101-1129.doi: 10.1137/050630003. |
[21] |
S. Liu and J. Zhang, Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure, J. Math. Anal. Appl., 342 (2008), 446-460.doi: 10.1016/j.jmaa.2007.12.038. |
[22] |
R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence, J. Reine Angew. Math., 413 (1991), 1-35. |
[23] |
R. M. May, Stability and complexity in model ecosystems, in IEEE Transactions on Systems, Man and Cybernetics, SMC-6, 1976, p887.doi: 10.1109/TSMC.1976.4309488. |
[24] |
K. Mischaikow, H. Smith and H. R Thieme, Asympotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. AMS., 347 (1995), 1669-1685.doi: 10.1090/S0002-9947-1995-1290727-7. |
[25] |
P. De Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion, SIAM J. Appl. Math., 37 (1979), 648-663.doi: 10.1137/0137048. |
[26] |
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third edition, Interdisciplinary Applied Mathematics, Vol. 18, Springer, New York, 2003. |
[27] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. |
[28] |
C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 198 (1996), 751-779.doi: 10.1006/jmaa.1996.0111. |
[29] |
C. V. Pao, Coupled nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 196 (1995), 237-265.doi: 10.1006/jmaa.1995.1408. |
[30] |
R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion models, Nonlin. Analy., 71 (2009), 239-247.doi: 10.1016/j.na.2008.10.043. |
[31] |
S. Ruan and X.-Q. Zhao, Persistence and extinction in two species reaction-diffusion systems with delays, J. Differential Equations, 156 (1999), 71-92.doi: 10.1006/jdeq.1998.3599. |
[32] |
G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 82 (2001), 3083-3092. |
[33] |
H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM J. Appl. Math., 42 (1982), 27-43.doi: 10.1137/0142003. |
[34] |
J. W.-H. So and X. Q Zhao, A Threshold Phenomenon in a Reaction-Diffusion Equation with Temporal Delays, Note, 1997. |
[35] |
Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247 (2009), 1156-1184.doi: 10.1016/j.jde.2009.04.017. |
[36] |
Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific Publishing Co. Pte. Ltd, Singapore, 1996.doi: 10.1142/9789812830548. |
[37] |
M. Wang and Peter Y. H. Pang, Qualitative analysis of a diffusive variable-territory prey-predator model, Discrete Contin. Dyn. Syst., 23 (2009), 1061-1072.doi: 10.3934/dcds.2009.23.1061. |
[38] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, Vol. 119, Springer, New York, 1996.doi: 10.1007/978-1-4612-4050-1. |
[39] |
D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure, Canad. Appl. Math. Quart., 11 (2003), 303-319. |
[40] |
R. Xu, Global Convergence of a predator-prey model with stage structure and spatio-temporal delay, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273-291.doi: 10.3934/dcdsb.2011.15.273. |
[41] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.doi: 10.1016/j.jde.2008.10.024. |
[42] |
T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.doi: 10.1098/rspa.2009.0650. |
[43] |
T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, J. Differential equations, 245 (2008), 3376-3388.doi: 10.1016/j.jde.2008.03.007. |