January  2015, 20(1): 173-187. doi: 10.3934/dcdsb.2015.20.173

Spatial pattern of discrete and ultradiscrete Gray-Scott model

1. 

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

2. 

Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei-shi, Tokyo 184-8588, Japan

Received  April 2013 Revised  December 2013 Published  November 2014

Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. In addition the cellular automaton constructed by this procedure preserves the essential properties of the original equation, such as the structure of exact solutions for integrable equations. In this article, we propose a discretization and an ultradiscretization of Gray-Scott model which is not an integrable system and which gives various spatial patterns with appropriate initial data and parameters. The resulting systems give a traveling pulse and a self-replication pattern with appropriate initial data and parameters. The ultradiscrete system is directly related to the elementary cellular automaton Rule 90 which gives a Sierpinski gasket pattern. A $(2+1)$D ultradiscrete Gray-Scott model that gives a ring pattern and a self-replication pattern are also constructed.
Citation: Keisuke Matsuya, Mikio Murata. Spatial pattern of discrete and ultradiscrete Gray-Scott model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 173-187. doi: 10.3934/dcdsb.2015.20.173
References:
[1]

M. J. Ablowitz, J. M. Keiser and L. A. Takhtajan, Stable, multi-state, time-reversible cellular automata with rich particle content, Quaestiones Math., 15 (1992), 325-343. doi: 10.1080/16073606.1992.9631695.

[2]

M. E. Alexander and S. M. Moghadas, $\mathcalO(l)$ shift in Hopf bifurcations for a class of non-standard numerical schemes, in Proceedings of the 2004 Conference on Differential Equations and Applications in Mathematical Biology, Electron. J. Differ. Equ. Conf., 12, Texas State Univ.San Marcos, Dept. Math., San Marcos, TX, 2005, 12 pp. (electronic).

[3]

A. S. Fokas, E. Papadopoulou and Y. Saridakis, Soliton cellular automata, Physica D, 41 (1990), 297-321. doi: 10.1016/0167-2789(90)90001-6.

[4]

A. S. Fokas, E. Papadopoulou, Y. Saridakis and M. J. Ablowitz, Interaction of simple particles in soliton cellular automata, Stud. Appl. Math., 81 (1989), 153-180.

[5]

P. Gray and S. K. Scott, Sustained oscillations and other exotic patterns of behaviour in isothermal reactions, J. Phys. Chem., 89 (1985), 22-32. doi: 10.1021/j100247a009.

[6]

W. Kunishima, A. Nishiyama, H. Tanaka and T. Tokihiro, Differential equations for creating complex cellular automaton patterns, J. Phys. Soc. Japan, 73 (2004), 2033-2036. doi: 10.1143/JPSJ.73.2033.

[7]

J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii, Toda-type cellular automaton and its N-soliton solution, Phys. Lett. A, 225 (1997), 287-295. doi: 10.1016/S0375-9601(96)00899-7.

[8]

W. Mazin, K. E. Rasmussen, E. Mosekilde, P. Borckmans and G. Dewel, Pattern formation in the bistable Gray-Scott model, Math. Comput. Simul., 40 (1996), 371-396. doi: 10.1016/0378-4754(95)00044-5.

[9]

M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type $A_6^{(1)}$, SIGMA, 7 (2011), Paper059, 15 pp.

[10]

M. Murata, Tropical discretization: Ultradiscrete Fisher-KPP equation and ultradiscrete Allen-Cahn equation, J. Difference. Equ. Appl., 19 (2013), 1008-1021. doi: 10.1080/10236198.2012.705834.

[11]

M. Murata, S. Isojima, A. Nobe and J. Satsuma, Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball systems, J. Phys. A Math. Gen., 39 (2006), L27-L34. doi: 10.1088/0305-4470/39/1/L04.

[12]

M. Murata, J. Satsuma, A. Ramani and B. Grammaticos, How to discretize differential systems in a systematic way, J. Phys. A: Math. Theor., 43 (2010), 315203, 15 pp. doi: 10.1088/1751-8113/43/31/315203.

[13]

A. Nagai, D. Takahashi and T. Tokihiro, Soliton cellular automaton, toda molecule equation and sorting algorithm, Phys. Lett. A, 255 (1999), 265-271. doi: 10.1016/S0375-9601(99)00162-0.

[14]

Y. Nishiura and D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D, 130 (1999), 73-104. doi: 10.1016/S0167-2789(99)00010-X.

[15]

Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model, Physica D, 150 (2001), 137-162. doi: 10.1016/S0167-2789(00)00214-1.

[16]

J. K. Park, K. Steiglitz and W. P. Thurston, Soliton-like behavior in automata, Physica D, 19 (1986), 423-432. doi: 10.1016/0167-2789(86)90068-0.

[17]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192. doi: 10.1126/science.261.5118.189.

[18]

D. Takahashi and J. Satsuma, A soliton cellular automaton, J. Phys. Soc. Japan, 59 (1990), 3514-3519. doi: 10.1143/JPSJ.59.3514.

[19]

D. Takahashi, A. Shida and M. Usami, On the pattern formation mechanism of (2+1)D max-plus models, J. Phys. A: Math. Gen., 34 (2001), 10715-10726. doi: 10.1088/0305-4470/34/48/333.

[20]

H. Tanaka, A. Nakajima, A. Nishiyama and T. Tokihiro, Derivation of a differential equation exhibiting replicative time-evolution patterns by inverse ultra-discretization, J. Phys. Soc. Japan, 78 (2009), 034002, 5 pp. doi: 10.1143/JPSJ.78.034002.

[21]

T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett., 76 (1996), 3247-3250. doi: 10.1103/PhysRevLett.76.3247.

[22]

S. Wolfram, Twenty Problems in the Theory of Cellular Automata, Physica Scripta., T9 (1985), 170-183. doi: 10.1088/0031-8949/1985/T9/029.

show all references

References:
[1]

M. J. Ablowitz, J. M. Keiser and L. A. Takhtajan, Stable, multi-state, time-reversible cellular automata with rich particle content, Quaestiones Math., 15 (1992), 325-343. doi: 10.1080/16073606.1992.9631695.

[2]

M. E. Alexander and S. M. Moghadas, $\mathcalO(l)$ shift in Hopf bifurcations for a class of non-standard numerical schemes, in Proceedings of the 2004 Conference on Differential Equations and Applications in Mathematical Biology, Electron. J. Differ. Equ. Conf., 12, Texas State Univ.San Marcos, Dept. Math., San Marcos, TX, 2005, 12 pp. (electronic).

[3]

A. S. Fokas, E. Papadopoulou and Y. Saridakis, Soliton cellular automata, Physica D, 41 (1990), 297-321. doi: 10.1016/0167-2789(90)90001-6.

[4]

A. S. Fokas, E. Papadopoulou, Y. Saridakis and M. J. Ablowitz, Interaction of simple particles in soliton cellular automata, Stud. Appl. Math., 81 (1989), 153-180.

[5]

P. Gray and S. K. Scott, Sustained oscillations and other exotic patterns of behaviour in isothermal reactions, J. Phys. Chem., 89 (1985), 22-32. doi: 10.1021/j100247a009.

[6]

W. Kunishima, A. Nishiyama, H. Tanaka and T. Tokihiro, Differential equations for creating complex cellular automaton patterns, J. Phys. Soc. Japan, 73 (2004), 2033-2036. doi: 10.1143/JPSJ.73.2033.

[7]

J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii, Toda-type cellular automaton and its N-soliton solution, Phys. Lett. A, 225 (1997), 287-295. doi: 10.1016/S0375-9601(96)00899-7.

[8]

W. Mazin, K. E. Rasmussen, E. Mosekilde, P. Borckmans and G. Dewel, Pattern formation in the bistable Gray-Scott model, Math. Comput. Simul., 40 (1996), 371-396. doi: 10.1016/0378-4754(95)00044-5.

[9]

M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type $A_6^{(1)}$, SIGMA, 7 (2011), Paper059, 15 pp.

[10]

M. Murata, Tropical discretization: Ultradiscrete Fisher-KPP equation and ultradiscrete Allen-Cahn equation, J. Difference. Equ. Appl., 19 (2013), 1008-1021. doi: 10.1080/10236198.2012.705834.

[11]

M. Murata, S. Isojima, A. Nobe and J. Satsuma, Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball systems, J. Phys. A Math. Gen., 39 (2006), L27-L34. doi: 10.1088/0305-4470/39/1/L04.

[12]

M. Murata, J. Satsuma, A. Ramani and B. Grammaticos, How to discretize differential systems in a systematic way, J. Phys. A: Math. Theor., 43 (2010), 315203, 15 pp. doi: 10.1088/1751-8113/43/31/315203.

[13]

A. Nagai, D. Takahashi and T. Tokihiro, Soliton cellular automaton, toda molecule equation and sorting algorithm, Phys. Lett. A, 255 (1999), 265-271. doi: 10.1016/S0375-9601(99)00162-0.

[14]

Y. Nishiura and D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D, 130 (1999), 73-104. doi: 10.1016/S0167-2789(99)00010-X.

[15]

Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model, Physica D, 150 (2001), 137-162. doi: 10.1016/S0167-2789(00)00214-1.

[16]

J. K. Park, K. Steiglitz and W. P. Thurston, Soliton-like behavior in automata, Physica D, 19 (1986), 423-432. doi: 10.1016/0167-2789(86)90068-0.

[17]

J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192. doi: 10.1126/science.261.5118.189.

[18]

D. Takahashi and J. Satsuma, A soliton cellular automaton, J. Phys. Soc. Japan, 59 (1990), 3514-3519. doi: 10.1143/JPSJ.59.3514.

[19]

D. Takahashi, A. Shida and M. Usami, On the pattern formation mechanism of (2+1)D max-plus models, J. Phys. A: Math. Gen., 34 (2001), 10715-10726. doi: 10.1088/0305-4470/34/48/333.

[20]

H. Tanaka, A. Nakajima, A. Nishiyama and T. Tokihiro, Derivation of a differential equation exhibiting replicative time-evolution patterns by inverse ultra-discretization, J. Phys. Soc. Japan, 78 (2009), 034002, 5 pp. doi: 10.1143/JPSJ.78.034002.

[21]

T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett., 76 (1996), 3247-3250. doi: 10.1103/PhysRevLett.76.3247.

[22]

S. Wolfram, Twenty Problems in the Theory of Cellular Automata, Physica Scripta., T9 (1985), 170-183. doi: 10.1088/0031-8949/1985/T9/029.

[1]

Yuncheng You. Dynamics of three-component reversible Gray-Scott model. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1671-1688. doi: 10.3934/dcdsb.2010.14.1671

[2]

Berat Karaagac. Numerical treatment of Gray-Scott model with operator splitting method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2373-2386. doi: 10.3934/dcdss.2020143

[3]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure and Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[4]

Gaocheng Yue, Chengkui Zhong. Global attractors for the Gray-Scott equations in locally uniform spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 337-356. doi: 10.3934/dcdsb.2016.21.337

[5]

Junwei Feng, Hui Liu, Jie Xin. Uniform attractors of stochastic two-compartment Gray-Scott system with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4617-4640. doi: 10.3934/dcdsb.2020116

[6]

Junwei Feng, Hui Liu, Jie Xin. Uniform attractors of stochastic three-component Gray-Scott system with multiplicative noise. Mathematical Foundations of Computing, 2021, 4 (3) : 193-208. doi: 10.3934/mfc.2021012

[7]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[8]

Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555

[9]

Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217

[10]

Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045

[11]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[12]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[13]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[14]

Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4473-4489. doi: 10.3934/dcdsb.2021237

[15]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[16]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[17]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[18]

Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (12) : 7783-7816. doi: 10.3934/dcdsb.2022063

[19]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125

[20]

Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (305)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]