August  2015, 20(6): 1821-1830. doi: 10.3934/dcdsb.2015.20.1821

Transversality for time-periodic competitive-cooperative tridiagonal systems

1. 

Wu Wen-Tsun Key Laboratory, School of Mathematical Science, University of Science and Technology of China, Hefei, Anhui, 230026, China, China

Received  July 2014 Revised  January 2015 Published  June 2015

Transversality of the stable and unstable manifolds of hyperbolic periodic solutions is proved for tridiagonal competitive-cooperative time-periodic systems. We further show that such systems admit the Morse-Smale property provided that all the fixed points (of the corresponding Poincaré map) are hyperbolic. The main tools used here are the integer-valued Lyapunov function, as well as the Floquet theory developed in [1] for general time-dependent tridiagonal linear systems.
Citation: Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821
References:
[1]

C. Fang, M. Gyllenberg and Y. Wang, Floquet bundles for tridiagonal competitive-cooperative systems and the dynamics of time-recurrent systems,, SIAM J. Math. Anal., 45 (2013), 2477.  doi: 10.1137/120878021.  Google Scholar

[2]

G. Fusco and W. Oliva, Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems,, J. Dynam. Differential Equations, 2 (1990), 1.  doi: 10.1007/BF01047768.  Google Scholar

[3]

G. Fusco and W. Oliva, Jacobi matrices and transversality,, Proc. Roy. Soc. Edinburgh Sect. A, 109 (1988), 231.  doi: 10.1017/S0308210500027748.  Google Scholar

[4]

J. Hale and A. Somolinos, Competition for fluctuating nutrient,, J. Math. Biol., 18 (1983), 255.  doi: 10.1007/BF00276091.  Google Scholar

[5]

M. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in 3-dimensional systems,, J. Differential Equations, 80 (1989), 94.  doi: 10.1016/0022-0396(89)90097-1.  Google Scholar

[6]

J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete lyapunov functions,, J. Dynam. Differential Equations, 125 (1996), 385.  doi: 10.1006/jdeq.1996.0036.  Google Scholar

[7]

J. Mallet-Paret and H. Smith, The poincare-bendixson theorem for monotone cyclic feedback systems,, J. Dynam. Differential Equations, 2 (1990), 367.  doi: 10.1007/BF01054041.  Google Scholar

[8]

P. Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[9]

J. Selgrade, Isolated invariant sets for flows on vector bundles,, Trans. Amer. Math. Soc., 203 (1975), 359.  doi: 10.1090/S0002-9947-1975-0368080-X.  Google Scholar

[10]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.  doi: 10.1137/0515040.  Google Scholar

[11]

H. Smith, Periodic tridiagonal competitive and cooperative systems of differential equations,, SIAM J. Math. Anal., 22 (1991), 1102.  doi: 10.1137/0522071.  Google Scholar

[12]

Y. Wang, Dynamics of nonautonomous tridiagonal competitive-cooperative systems of differential equations,, Nonlinearity, 20 (2007), 831.  doi: 10.1088/0951-7715/20/4/002.  Google Scholar

show all references

References:
[1]

C. Fang, M. Gyllenberg and Y. Wang, Floquet bundles for tridiagonal competitive-cooperative systems and the dynamics of time-recurrent systems,, SIAM J. Math. Anal., 45 (2013), 2477.  doi: 10.1137/120878021.  Google Scholar

[2]

G. Fusco and W. Oliva, Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems,, J. Dynam. Differential Equations, 2 (1990), 1.  doi: 10.1007/BF01047768.  Google Scholar

[3]

G. Fusco and W. Oliva, Jacobi matrices and transversality,, Proc. Roy. Soc. Edinburgh Sect. A, 109 (1988), 231.  doi: 10.1017/S0308210500027748.  Google Scholar

[4]

J. Hale and A. Somolinos, Competition for fluctuating nutrient,, J. Math. Biol., 18 (1983), 255.  doi: 10.1007/BF00276091.  Google Scholar

[5]

M. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in 3-dimensional systems,, J. Differential Equations, 80 (1989), 94.  doi: 10.1016/0022-0396(89)90097-1.  Google Scholar

[6]

J. Mallet-Paret and G. Sell, Systems of differential delay equations: Floquet multipliers and discrete lyapunov functions,, J. Dynam. Differential Equations, 125 (1996), 385.  doi: 10.1006/jdeq.1996.0036.  Google Scholar

[7]

J. Mallet-Paret and H. Smith, The poincare-bendixson theorem for monotone cyclic feedback systems,, J. Dynam. Differential Equations, 2 (1990), 367.  doi: 10.1007/BF01054041.  Google Scholar

[8]

P. Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach,, J. Math. Biol., 11 (1981), 319.  doi: 10.1007/BF00276900.  Google Scholar

[9]

J. Selgrade, Isolated invariant sets for flows on vector bundles,, Trans. Amer. Math. Soc., 203 (1975), 359.  doi: 10.1090/S0002-9947-1975-0368080-X.  Google Scholar

[10]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530.  doi: 10.1137/0515040.  Google Scholar

[11]

H. Smith, Periodic tridiagonal competitive and cooperative systems of differential equations,, SIAM J. Math. Anal., 22 (1991), 1102.  doi: 10.1137/0522071.  Google Scholar

[12]

Y. Wang, Dynamics of nonautonomous tridiagonal competitive-cooperative systems of differential equations,, Nonlinearity, 20 (2007), 831.  doi: 10.1088/0951-7715/20/4/002.  Google Scholar

[1]

Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289

[2]

Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155

[3]

G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29

[4]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[5]

Lin Niu, Yi Wang. Non-oscillation principle for eventually competitive and cooperative systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6481-6494. doi: 10.3934/dcdsb.2019148

[6]

Philip Schrader. Morse theory for elastica. Journal of Geometric Mechanics, 2016, 8 (2) : 235-256. doi: 10.3934/jgm.2016006

[7]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[8]

María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024

[9]

Bin Yu. Behavior $0$ nonsingular Morse Smale flows on $S^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 509-540. doi: 10.3934/dcds.2016.36.509

[10]

Pablo Álvarez-Caudevilla, Julián López-Gómez. The dynamics of a class of cooperative systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 397-415. doi: 10.3934/dcds.2010.26.397

[11]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[12]

Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123

[13]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[14]

Jijiang Sun, Shiwang Ma. Nontrivial solutions for Kirchhoff type equations via Morse theory. Communications on Pure & Applied Analysis, 2014, 13 (2) : 483-494. doi: 10.3934/cpaa.2014.13.483

[15]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019036

[16]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[17]

Pablo Álvarez-Caudevilla, Julián López-Gómez. Characterizing the existence of coexistence states in a class of cooperative systems. Conference Publications, 2009, 2009 (Special) : 24-33. doi: 10.3934/proc.2009.2009.24

[18]

Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035

[19]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[20]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]