August  2015, 20(6): 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

Spatial dynamics of a diffusive predator-prey model with stage structure

1. 

School of Mathematics and Statistics, Lanzhou University , and Key Laboratory of Applied Mathematics and Complex Systems of Gansu province, Lanzhou, Gansu 730000, China

2. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000

Received  October 2013 Revised  April 2014 Published  June 2015

In this paper, we propose a nonlocal and time-delayed reaction-diffusion predator-prey model with stage structure. It is assumed that prey individuals undergo two stages, immature and mature, and the conversion of consumed prey biomass into predator biomass has a retardation. In terms of the principal eigenvalue of nonlocal elliptic eigenvalue problems, we establish the uniform persistence and global extinction for the model. In particular, the uniform persistence implies the existence of positive steady states. Finally, we investigate a specially spatially homogeneous predator-prey system and show the complicated dynamics of the system due to the non-local delay in the prey equation.
Citation: Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831
References:
[1]

W. G. Aiello and H. I. Freedman, A time-delay model of single species growth with stage structure,, Math. Biosci., 101 (1990), 139.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

J. Al-Omari and S. A. Gourley, Monotone travelling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[3]

J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, European J. Appl. Math., 16 (2005), 37.  doi: 10.1017/S0956792504005716.  Google Scholar

[4]

N. F. Britton, Aggregation and competitive exclusion principle,, J. Theoret. Biol., 136 (1989), 57.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[5]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[6]

L. Berezansky, E. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems,, Appl. Math. Model., 34 (2010), 1405.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[7]

D. Duehring and W. Huang, Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction,, J. Dynam. Differential Equations, 19 (2007), 457.  doi: 10.1007/s10884-006-9048-8.  Google Scholar

[8]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[9]

T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reaction-diffusion equation with delay,, J. Differential Equations, 228 (2006), 357.  doi: 10.1016/j.jde.2006.05.006.  Google Scholar

[10]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with non-local effects,, J. Math. Biol., 34 (1996), 297.  doi: 10.1007/BF00160498.  Google Scholar

[11]

S. A. Gourley and Y. Kuang, Wavefronts and global stability is a time-delayed population model with stage structure,, R. Soc. Lond. Proc., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[12]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806.  doi: 10.1137/S003614100139991.  Google Scholar

[13]

S. A. Gourley and J. H.-W. So, Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 527.  doi: 10.1017/S0308210500002523.  Google Scholar

[14]

S. A. Gourley, J. H.-W. So and J. Wu, Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics,, J. Math. Sci., 124 (2004), 5119.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[15]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, Fields Institute Communications, 48 (2006), 137.   Google Scholar

[16]

W. Gurney, S. Blythe and R. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs, (1988).   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[19]

K. Hong and P. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-II functional response and harvesting,, Nonlinear Anal. Real World Appl., 14 (2013), 83.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[20]

W. Huang, Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response,, J. Differential Equations, 244 (2008), 1230.  doi: 10.1016/j.jde.2007.10.001.  Google Scholar

[21]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[22]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.1090/S0002-9947-1990-0967316-X.  Google Scholar

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations,, Springer, (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems,, Math. Surveys and Monographs, (1995).   Google Scholar

[25]

J. W. -H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure I. Traveling wavefronts on unbounded domains,, Proc. R. Soc. Lond., 475 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[26]

J. W.-H. So and Y. Yang, Dirichlet problem for the diffusive Nicholson's blowflies equation,, J. Differential Equations, 150 (1998), 317.  doi: 10.1006/jdeq.1998.3489.  Google Scholar

[27]

H. R. Thieme, Convergence results and Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[28]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[29]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Anal. Real World Appl., 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[30]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[31]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081.  doi: 10.1017/S0308210509000262.  Google Scholar

[32]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Applied Math. Sci., (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[33]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Differential Equations, 186 (2002), 470.  doi: 10.1016/S0022-0396(02)00012-8.  Google Scholar

[34]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, Can. Appl. Math. Q., 11 (2003), 303.   Google Scholar

[35]

R. Xu, A reaction-diffusion predator-prey model with stage structure and nonlocal delay,, Appl. Math. Comput., 175 (2006), 984.  doi: 10.1016/j.amc.2005.08.014.  Google Scholar

[36]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[37]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays,, Chaos Solitons Fractals, 30 (2006), 974.  doi: 10.1016/j.chaos.2005.09.022.  Google Scholar

[38]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Global convergence of a reaction-diffusion predator-prey model with stage structure and nonlocal delays,, Comput. Math. Appl., 53 (2007), 770.  doi: 10.1016/j.camwa.2007.02.002.  Google Scholar

[39]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation. Dynamical systems and differential equations, Vol. II (Springfield, MO, 1996),, Discrete Contin. Dynam. Systems, 2 (1998), 333.   Google Scholar

[40]

T. Yi. Y. Chen and J. Wu, Threshold dynamics of a delayed reaction diffusion equation subject to the Dirichlet condition,, J. Biol. Dyn., 3 (2009), 331.  doi: 10.1080/17513750802425656.  Google Scholar

[41]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case,, J. Differential Equations, 245 (2008), 3376.  doi: 10.1016/j.jde.2008.03.007.  Google Scholar

[42]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[43]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equation with time delay,, Canad. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

[44]

X.-Q. Zhao, Spatial dynamics of some evolution system in biology,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 332.  doi: 10.1142/9789812834744_0015.  Google Scholar

show all references

References:
[1]

W. G. Aiello and H. I. Freedman, A time-delay model of single species growth with stage structure,, Math. Biosci., 101 (1990), 139.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

J. Al-Omari and S. A. Gourley, Monotone travelling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[3]

J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, European J. Appl. Math., 16 (2005), 37.  doi: 10.1017/S0956792504005716.  Google Scholar

[4]

N. F. Britton, Aggregation and competitive exclusion principle,, J. Theoret. Biol., 136 (1989), 57.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[5]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[6]

L. Berezansky, E. Braverman and L. Idels, Nicholson's blowflies differential equations revisited: Main results and open problems,, Appl. Math. Model., 34 (2010), 1405.  doi: 10.1016/j.apm.2009.08.027.  Google Scholar

[7]

D. Duehring and W. Huang, Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction,, J. Dynam. Differential Equations, 19 (2007), 457.  doi: 10.1007/s10884-006-9048-8.  Google Scholar

[8]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[9]

T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reaction-diffusion equation with delay,, J. Differential Equations, 228 (2006), 357.  doi: 10.1016/j.jde.2006.05.006.  Google Scholar

[10]

S. A. Gourley and N. F. Britton, A predator-prey reaction-diffusion system with non-local effects,, J. Math. Biol., 34 (1996), 297.  doi: 10.1007/BF00160498.  Google Scholar

[11]

S. A. Gourley and Y. Kuang, Wavefronts and global stability is a time-delayed population model with stage structure,, R. Soc. Lond. Proc., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[12]

S. A. Gourley and S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: A competition model,, SIAM J. Math. Anal., 35 (2003), 806.  doi: 10.1137/S003614100139991.  Google Scholar

[13]

S. A. Gourley and J. H.-W. So, Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 527.  doi: 10.1017/S0308210500002523.  Google Scholar

[14]

S. A. Gourley, J. H.-W. So and J. Wu, Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics,, J. Math. Sci., 124 (2004), 5119.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[15]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread,, Fields Institute Communications, 48 (2006), 137.   Google Scholar

[16]

W. Gurney, S. Blythe and R. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: 10.1038/287017a0.  Google Scholar

[17]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs, (1988).   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[19]

K. Hong and P. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-II functional response and harvesting,, Nonlinear Anal. Real World Appl., 14 (2013), 83.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[20]

W. Huang, Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response,, J. Differential Equations, 244 (2008), 1230.  doi: 10.1016/j.jde.2007.10.001.  Google Scholar

[21]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[22]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.1090/S0002-9947-1990-0967316-X.  Google Scholar

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations,, Springer, (1986).  doi: 10.1007/978-3-662-13159-6.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems,, Math. Surveys and Monographs, (1995).   Google Scholar

[25]

J. W. -H. So, J. Wu and X. Zou, A reaction-diffusion model for a single species with age structure I. Traveling wavefronts on unbounded domains,, Proc. R. Soc. Lond., 475 (2001), 1841.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[26]

J. W.-H. So and Y. Yang, Dirichlet problem for the diffusive Nicholson's blowflies equation,, J. Differential Equations, 150 (1998), 317.  doi: 10.1006/jdeq.1998.3489.  Google Scholar

[27]

H. R. Thieme, Convergence results and Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[28]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407.  doi: 10.1137/0524026.  Google Scholar

[29]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model,, Nonlinear Anal. Real World Appl., 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[30]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[31]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081.  doi: 10.1017/S0308210509000262.  Google Scholar

[32]

J. Wu, Theory and Applications of Partial Functional Differential Equations,, Applied Math. Sci., (1996).  doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[33]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Differential Equations, 186 (2002), 470.  doi: 10.1016/S0022-0396(02)00012-8.  Google Scholar

[34]

D. Xu and X.-Q. Zhao, A nonlocal reaction-diffusion population model with stage structure,, Can. Appl. Math. Q., 11 (2003), 303.   Google Scholar

[35]

R. Xu, A reaction-diffusion predator-prey model with stage structure and nonlocal delay,, Appl. Math. Comput., 175 (2006), 984.  doi: 10.1016/j.amc.2005.08.014.  Google Scholar

[36]

R. Xu, Global convergence of a predator-prey model with stage structure and spatio-temporal delay,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 273.  doi: 10.3934/dcdsb.2011.15.273.  Google Scholar

[37]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays,, Chaos Solitons Fractals, 30 (2006), 974.  doi: 10.1016/j.chaos.2005.09.022.  Google Scholar

[38]

R. Xu, M. A. J. Chaplain and F. A. Davidson, Global convergence of a reaction-diffusion predator-prey model with stage structure and nonlocal delays,, Comput. Math. Appl., 53 (2007), 770.  doi: 10.1016/j.camwa.2007.02.002.  Google Scholar

[39]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation. Dynamical systems and differential equations, Vol. II (Springfield, MO, 1996),, Discrete Contin. Dynam. Systems, 2 (1998), 333.   Google Scholar

[40]

T. Yi. Y. Chen and J. Wu, Threshold dynamics of a delayed reaction diffusion equation subject to the Dirichlet condition,, J. Biol. Dyn., 3 (2009), 331.  doi: 10.1080/17513750802425656.  Google Scholar

[41]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case,, J. Differential Equations, 245 (2008), 3376.  doi: 10.1016/j.jde.2008.03.007.  Google Scholar

[42]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[43]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equation with time delay,, Canad. Appl. Math. Quart., 17 (2009), 271.   Google Scholar

[44]

X.-Q. Zhao, Spatial dynamics of some evolution system in biology,, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, (2009), 332.  doi: 10.1142/9789812834744_0015.  Google Scholar

[1]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[5]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[20]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]