Citation: |
[1] |
E. Alvarez-Pardo, Perturbing the boundary conditions of the generator of a cosine family, Semigroup Forum, 85 (2012), 58-74.doi: 10.1007/s00233-011-9361-3. |
[2] |
E. Alvarez-Pardo and M. Warma, The one-dimensional wave equation with general boundary conditions, Archiv der Mathematik, 96 (2011), 177-186.doi: 10.1007/s00013-010-0209-y. |
[3] |
J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.doi: 10.1016/j.jmaa.2012.02.002. |
[4] |
A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. III., 4 (1956), 261-264. |
[5] |
A. Bobrowski, Generation of cosine families via Lord Kelvin's method of images, J. Evol. Equ., 10 (2010), 663-675.doi: 10.1007/s00028-010-0065-z. |
[6] |
A. Bobrowski, Lord Kelvin's method of images in semigroup theory, Semigroup Forum, 81 (2010), 435-445.doi: 10.1007/s00233-010-9230-5. |
[7] |
A. Bobrowski and A. Gregosiewicz, A general theorem on generation of moments-preserving cosine families by Laplace operators in C[0,1], Semigroup Forum, 88 (2014), 689-701.doi: 10.1007/s00233-013-9561-0. |
[8] |
A. Bobrowski and D. Mugnolo, On moments-preserving cosine families and semigroups in C[0,1], J. Evol. Equ., 13 (2013), 715-735.doi: 10.1007/s00028-013-0199-x. |
[9] |
J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160. |
[10] |
R. E. Edwards, Functional Analysis. Theory and Applications, Dover Publications, Inc., New York, 1995. |
[11] |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. |
[12] |
J. A. Goldstein, On the convergence and approximation of cosine functions, Aequationes Math., 11 (1974), 201-205. |
[13] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. |
[14] |
G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229. |
[15] |
Y. Konishi, Cosine functions of operators in locally convex spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971/72), 443-463. |
[16] |
A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Phys. D, 239 (2010), 1436-1445.doi: 10.1016/j.physd.2009.03.013. |
[17] |
D. Mugnolo and S. Nicaise, Diffusion processes on an interval under linear moment conditions, Semigroup Forum, 88 (2014), 479-511.doi: 10.1007/s00233-013-9552-1. |
[18] |
D. Mugnolo and S. Nicaise, Well-posedness and spectral properties of heat and wave equations with non-local conditions, J. Differential Equations, 256 (2014), 2115-2151.doi: 10.1016/j.jde.2013.12.016. |
[19] |
H. F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1965. |
[20] |
T.-J. Xiao and J. Liang, Second order differential operators with Feller-Wentzell type boundary conditions, J. Funct. Anal., 254 (2008), 1467-1486.doi: 10.1016/j.jfa.2007.12.012. |