\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Functionals-preserving cosine families generated by Laplace operators in C[0,1]

Abstract Related Papers Cited by
  • Let \( C[0,1] \) be the space of continuous functions on the unit interval \( [0,1] \). A cosine family $\{C(t), t \in \mathbb{R}\}$ in $C[0,1]$ is said to be Laplace-operator generated, if its generator is a restriction of the Laplace operator $L\colon f \mapsto f''$ to a suitable subset of $C^2[0,1].$ The family is said to preserve a functional $F \in (C[0,1])^*$ if for all $f \in C[0,1]$ and $t \in \mathbb{R}, $ $FC(t)f = Ff.$ We study a class of pairs of functionals such that for each member of this class there is a unique Laplace-operator generated cosine family that preserves both functionals in the pair.
    Mathematics Subject Classification: 47D06, 47D09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Alvarez-Pardo, Perturbing the boundary conditions of the generator of a cosine family, Semigroup Forum, 85 (2012), 58-74.doi: 10.1007/s00233-011-9361-3.

    [2]

    E. Alvarez-Pardo and M. Warma, The one-dimensional wave equation with general boundary conditions, Archiv der Mathematik, 96 (2011), 177-186.doi: 10.1007/s00013-010-0209-y.

    [3]

    J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.doi: 10.1016/j.jmaa.2012.02.002.

    [4]

    A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. III., 4 (1956), 261-264.

    [5]

    A. Bobrowski, Generation of cosine families via Lord Kelvin's method of images, J. Evol. Equ., 10 (2010), 663-675.doi: 10.1007/s00028-010-0065-z.

    [6]

    A. Bobrowski, Lord Kelvin's method of images in semigroup theory, Semigroup Forum, 81 (2010), 435-445.doi: 10.1007/s00233-010-9230-5.

    [7]

    A. Bobrowski and A. Gregosiewicz, A general theorem on generation of moments-preserving cosine families by Laplace operators in C[0,1], Semigroup Forum, 88 (2014), 689-701.doi: 10.1007/s00233-013-9561-0.

    [8]

    A. Bobrowski and D. Mugnolo, On moments-preserving cosine families and semigroups in C[0,1], J. Evol. Equ., 13 (2013), 715-735.doi: 10.1007/s00028-013-0199-x.

    [9]

    J. R. Cannon, The solution of the heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160.

    [10]

    R. E. Edwards, Functional Analysis. Theory and Applications, Dover Publications, Inc., New York, 1995.

    [11]

    W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.

    [12]

    J. A. Goldstein, On the convergence and approximation of cosine functions, Aequationes Math., 11 (1974), 201-205.

    [13]

    J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985.

    [14]

    G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), 213-229.

    [15]

    Y. Konishi, Cosine functions of operators in locally convex spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971/72), 443-463.

    [16]

    A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Phys. D, 239 (2010), 1436-1445.doi: 10.1016/j.physd.2009.03.013.

    [17]

    D. Mugnolo and S. Nicaise, Diffusion processes on an interval under linear moment conditions, Semigroup Forum, 88 (2014), 479-511.doi: 10.1007/s00233-013-9552-1.

    [18]

    D. Mugnolo and S. Nicaise, Well-posedness and spectral properties of heat and wave equations with non-local conditions, J. Differential Equations, 256 (2014), 2115-2151.doi: 10.1016/j.jde.2013.12.016.

    [19]

    H. F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1965.

    [20]

    T.-J. Xiao and J. Liang, Second order differential operators with Feller-Wentzell type boundary conditions, J. Funct. Anal., 254 (2008), 1467-1486.doi: 10.1016/j.jfa.2007.12.012.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return