September  2015, 20(7): 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

Long-time behavior of solutions of a BBM equation with generalized damping

1. 

LAMFA, UMR 6140, Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80039 Amiens

2. 

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France, France

Received  February 2014 Revised  May 2015 Published  July 2015

We study the long-time behavior of the solution of a damped BBM equation $u_t + u_x - u_{xxt} + uu_x + \mathscr{L}_{\gamma}(u) = 0$. The proposed dampings $\mathscr{L}_{\gamma}$ generalize standards ones, as parabolic ($\mathscr{L}_{\gamma}(u)=-\Delta u$) or weak damping ($\mathscr{L}_{\gamma}(u)=\gamma u$) and allows us to consider a greater range. After establish the local well-posedness in the energy space, we investigate some numerical properties.
Citation: Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897
References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Commun. Pure Appl. Anal., 7 (2008), 211.   Google Scholar

[2]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation,, Phys. D, 192 (2004), 265.  doi: 10.1016/j.physd.2004.01.023.  Google Scholar

[5]

J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations,, Commun. Pure Appl. Anal., 12 (2013), 519.  doi: 10.3934/cpaa.2013.12.519.  Google Scholar

[6]

J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487.  doi: 10.3934/dcdss.2013.6.1487.  Google Scholar

[7]

A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation,, IMA J. Numer. Anal., 20 (2000), 235.  doi: 10.1093/imanum/20.2.235.  Google Scholar

[8]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time,, J. Differential Equations, 74 (1988), 369.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[9]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations,, J. Differential Equations, 110 (1994), 356.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[10]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations,, Discrete Contin. Dynam. Systems, 6 (2000), 625.   Google Scholar

[11]

O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line,, J. Differential Equations, 185 (2002), 25.  doi: 10.1006/jdeq.2001.4163.  Google Scholar

[12]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation,, Ann. Henri Poincaré, 8 (2007), 485.  doi: 10.1007/s00023-006-0314-4.  Google Scholar

[13]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves,, Phil. Maj., 39 (1895), 422.   Google Scholar

[14]

E. Ott and R. N. Sudan, Damping of solitary waves,, The Physics of fluids, 13 (1970).  doi: 10.1063/1.1693097.  Google Scholar

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[16]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations,, Funkcial. Ekvac., 54 (2011), 119.  doi: 10.1619/fesi.54.119.  Google Scholar

[17]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations,, Asymptot. Anal., 68 (2010), 155.   Google Scholar

[18]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation,, Appl. Math. Lett., 10 (1997), 23.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

show all references

References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Commun. Pure Appl. Anal., 7 (2008), 211.   Google Scholar

[2]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[3]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[4]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation,, Phys. D, 192 (2004), 265.  doi: 10.1016/j.physd.2004.01.023.  Google Scholar

[5]

J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations,, Commun. Pure Appl. Anal., 12 (2013), 519.  doi: 10.3934/cpaa.2013.12.519.  Google Scholar

[6]

J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487.  doi: 10.3934/dcdss.2013.6.1487.  Google Scholar

[7]

A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation,, IMA J. Numer. Anal., 20 (2000), 235.  doi: 10.1093/imanum/20.2.235.  Google Scholar

[8]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time,, J. Differential Equations, 74 (1988), 369.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[9]

J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations,, J. Differential Equations, 110 (1994), 356.  doi: 10.1006/jdeq.1994.1071.  Google Scholar

[10]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations,, Discrete Contin. Dynam. Systems, 6 (2000), 625.   Google Scholar

[11]

O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line,, J. Differential Equations, 185 (2002), 25.  doi: 10.1006/jdeq.2001.4163.  Google Scholar

[12]

N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation,, Ann. Henri Poincaré, 8 (2007), 485.  doi: 10.1007/s00023-006-0314-4.  Google Scholar

[13]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves,, Phil. Maj., 39 (1895), 422.   Google Scholar

[14]

E. Ott and R. N. Sudan, Damping of solitary waves,, The Physics of fluids, 13 (1970).  doi: 10.1063/1.1693097.  Google Scholar

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[16]

S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations,, Funkcial. Ekvac., 54 (2011), 119.  doi: 10.1619/fesi.54.119.  Google Scholar

[17]

S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations,, Asymptot. Anal., 68 (2010), 155.   Google Scholar

[18]

B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation,, Appl. Math. Lett., 10 (1997), 23.  doi: 10.1016/S0893-9659(97)00005-0.  Google Scholar

[1]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[2]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[3]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[4]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[5]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[6]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[7]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[8]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[9]

Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253

[10]

Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565

[11]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[12]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[13]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[14]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[15]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[16]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[17]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[18]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[19]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[20]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

[Back to Top]