-
Previous Article
Chaos in a model for masting
- DCDS-B Home
- This Issue
-
Next Article
Functionals-preserving cosine families generated by Laplace operators in C[0,1]
Long-time behavior of solutions of a BBM equation with generalized damping
1. | LAMFA, UMR 6140, Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80039 Amiens |
2. | Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80039 Amiens, France, France |
References:
[1] |
M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems, Commun. Pure Appl. Anal., 7 (2008), 211-227. |
[2] |
C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.
doi: 10.1016/0022-0396(89)90176-9. |
[3] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[4] |
M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278.
doi: 10.1016/j.physd.2004.01.023. |
[5] |
J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, Commun. Pure Appl. Anal., 12 (2013), 519-546.
doi: 10.3934/cpaa.2013.12.519. |
[6] |
J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487-1506.
doi: 10.3934/dcdss.2013.6.1487. |
[7] |
A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[8] |
J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Equations, 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations, 110 (1994), 356-359.
doi: 10.1006/jdeq.1994.1071. |
[10] |
O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644. |
[11] |
O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.
doi: 10.1006/jdeq.2001.4163. |
[12] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation, Ann. Henri Poincaré, 8 (2007), 485-511.
doi: 10.1007/s00023-006-0314-4. |
[13] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves, Phil. Maj., 39 (1895), 422-443. |
[14] |
E. Ott and R. N. Sudan, Damping of solitary waves, The Physics of fluids, 13 (1970), p1432.
doi: 10.1063/1.1693097. |
[15] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Applied Mathematical Sciences, 68, Springer, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[16] |
S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138.
doi: 10.1619/fesi.54.119. |
[17] |
S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186. |
[18] |
B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett., 10 (1997), 23-28.
doi: 10.1016/S0893-9659(97)00005-0. |
show all references
References:
[1] |
M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems, Commun. Pure Appl. Anal., 7 (2008), 211-227. |
[2] |
C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.
doi: 10.1016/0022-0396(89)90176-9. |
[3] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[4] |
M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278.
doi: 10.1016/j.physd.2004.01.023. |
[5] |
J.-P. Chehab and G. Sadaka, Numerical study of a family of dissipative KdV equations, Commun. Pure Appl. Anal., 12 (2013), 519-546.
doi: 10.3934/cpaa.2013.12.519. |
[6] |
J.-P. Chehab and G. Sadaka, On damping rates of dissipative KdV equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1487-1506.
doi: 10.3934/dcdss.2013.6.1487. |
[7] |
A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[8] |
J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Equations, 74 (1988), 369-390.
doi: 10.1016/0022-0396(88)90010-1. |
[9] |
J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations, 110 (1994), 356-359.
doi: 10.1006/jdeq.1994.1071. |
[10] |
O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644. |
[11] |
O. Goubet and R. M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.
doi: 10.1006/jdeq.2001.4163. |
[12] |
N. Hayashi, E. I. Kaikina and P. I. Naumkin, Large time asymptotics for the BBM-Burgers equation, Ann. Henri Poincaré, 8 (2007), 485-511.
doi: 10.1007/s00023-006-0314-4. |
[13] |
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves, Phil. Maj., 39 (1895), 422-443. |
[14] |
E. Ott and R. N. Sudan, Damping of solitary waves, The Physics of fluids, 13 (1970), p1432.
doi: 10.1063/1.1693097. |
[15] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, $2^{nd}$ edition, Applied Mathematical Sciences, 68, Springer, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[16] |
S. Vento, Global well-posedness for dissipative Korteweg-de Vries equations, Funkcial. Ekvac., 54 (2011), 119-138.
doi: 10.1619/fesi.54.119. |
[17] |
S. Vento, Asymptotic behavior of solutions to dissipative Korteweg-de Vries equations, Asymptot. Anal., 68 (2010), 155-186. |
[18] |
B. Wang, Strong attractors for the Benjamin-Bona-Mahony equation, Appl. Math. Lett., 10 (1997), 23-28.
doi: 10.1016/S0893-9659(97)00005-0. |
[1] |
Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 |
[2] |
Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149 |
[3] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[4] |
Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011 |
[5] |
Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053 |
[6] |
Mahendra Panthee. On the ill-posedness result for the BBM equation. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 253-259. doi: 10.3934/dcds.2011.30.253 |
[7] |
Xavier Carvajal, Mahendra Panthee. On ill-posedness for the generalized BBM equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4565-4576. doi: 10.3934/dcds.2014.34.4565 |
[8] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[9] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[10] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[11] |
Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803 |
[12] |
Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082 |
[13] |
Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315 |
[14] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[15] |
Xianbo Sun, Pei Yu. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 965-987. doi: 10.3934/dcdsb.2018341 |
[16] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[17] |
Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461 |
[18] |
Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521 |
[19] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[20] |
Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]