-
Previous Article
Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period
- DCDS-B Home
- This Issue
-
Next Article
Long-time behavior of solutions of a BBM equation with generalized damping
Chaos in a model for masting
1. | Department of Applied Mathematics, Chung Yuan Christian University, Chungli, Taiwan |
2. | Department of Mathematics, National Taiwan University, Taipei, Taiwan |
References:
[1] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.2307/2324899. |
[2] |
S. Bassein, The dynamics of a family of one-dimensional maps, Amer. Math. Monthly, 105 (1998), 118-130.
doi: 10.2307/2589643. |
[3] |
S. M. Chang and H. H. Chen, Applying snapback repellers in resource budget models, Chaos, 21 (2011), 043126, 8pp.
doi: 10.1063/1.3660662. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley, Redwood City, 1989. |
[5] |
Y. Isagi, K. Sugimura, A. Sumida and H. Ito, How does masting happen and synchronize, J. Theor. Biol., 187 (1997), 231-239.
doi: 10.1006/jtbi.1997.0442. |
[6] |
A. Satake and Y. Iwasa, Pollen-coupling of forest trees: Forming synchronized and periodic reproduction out of chaos, J. Theor. Biol., 203 (2000), 63-84.
doi: 10.1006/jtbi.1999.1066. |
show all references
References:
[1] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.2307/2324899. |
[2] |
S. Bassein, The dynamics of a family of one-dimensional maps, Amer. Math. Monthly, 105 (1998), 118-130.
doi: 10.2307/2589643. |
[3] |
S. M. Chang and H. H. Chen, Applying snapback repellers in resource budget models, Chaos, 21 (2011), 043126, 8pp.
doi: 10.1063/1.3660662. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley, Redwood City, 1989. |
[5] |
Y. Isagi, K. Sugimura, A. Sumida and H. Ito, How does masting happen and synchronize, J. Theor. Biol., 187 (1997), 231-239.
doi: 10.1006/jtbi.1997.0442. |
[6] |
A. Satake and Y. Iwasa, Pollen-coupling of forest trees: Forming synchronized and periodic reproduction out of chaos, J. Theor. Biol., 203 (2000), 63-84.
doi: 10.1006/jtbi.1999.1066. |
[1] |
Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 |
[2] |
Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875 |
[3] |
Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure and Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591 |
[4] |
Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072 |
[5] |
Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441 |
[6] |
Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103 |
[7] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[8] |
Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 |
[9] |
Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 |
[10] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
[11] |
Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 |
[12] |
Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861 |
[13] |
J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 |
[14] |
Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 |
[15] |
Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 |
[16] |
Piotr Oprocha. Specification properties and dense distributional chaos. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 |
[17] |
Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347 |
[18] |
Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323 |
[19] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[20] |
Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]