# American Institute of Mathematical Sciences

September  2015, 20(7): 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

## Chaos in a model for masting

 1 Department of Applied Mathematics, Chung Yuan Christian University, Chungli, Taiwan 2 Department of Mathematics, National Taiwan University, Taipei, Taiwan

Received  April 2014 Revised  January 2015 Published  July 2015

Isagi et al introduced a model for masting, that is, the intermittent production of flowers and fruit by trees. A tree produces flowers and fruit only when the stored energy exceeds a certain threshold value. If flowers and fruit are not produced, the stored energy increases by a certain fixed amount; if flowers and fruit are produced, the energy is depleted by an amount proportional to the excess stored energy. Thus a one-dimensional model is derived for the amount of stored energy. When the ratio of the amount of energy used for flowering and fruit production in a reproductive year to the excess amount of stored energy before that year is small, the stored energy approaches a constant value as time passes. However when this ratio is large, the amount of stored energy varies unpredictably and as the ratio increases the range of possible values for the stored energy increases also. In this article we describe this chaotic behavior precisely with complete proofs.
Citation: Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917
##### References:
 [1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334. doi: 10.2307/2324899. [2] S. Bassein, The dynamics of a family of one-dimensional maps, Amer. Math. Monthly, 105 (1998), 118-130. doi: 10.2307/2589643. [3] S. M. Chang and H. H. Chen, Applying snapback repellers in resource budget models, Chaos, 21 (2011), 043126, 8pp. doi: 10.1063/1.3660662. [4] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley, Redwood City, 1989. [5] Y. Isagi, K. Sugimura, A. Sumida and H. Ito, How does masting happen and synchronize, J. Theor. Biol., 187 (1997), 231-239. doi: 10.1006/jtbi.1997.0442. [6] A. Satake and Y. Iwasa, Pollen-coupling of forest trees: Forming synchronized and periodic reproduction out of chaos, J. Theor. Biol., 203 (2000), 63-84. doi: 10.1006/jtbi.1999.1066.

show all references

##### References:
 [1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334. doi: 10.2307/2324899. [2] S. Bassein, The dynamics of a family of one-dimensional maps, Amer. Math. Monthly, 105 (1998), 118-130. doi: 10.2307/2589643. [3] S. M. Chang and H. H. Chen, Applying snapback repellers in resource budget models, Chaos, 21 (2011), 043126, 8pp. doi: 10.1063/1.3660662. [4] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley, Redwood City, 1989. [5] Y. Isagi, K. Sugimura, A. Sumida and H. Ito, How does masting happen and synchronize, J. Theor. Biol., 187 (1997), 231-239. doi: 10.1006/jtbi.1997.0442. [6] A. Satake and Y. Iwasa, Pollen-coupling of forest trees: Forming synchronized and periodic reproduction out of chaos, J. Theor. Biol., 203 (2000), 63-84. doi: 10.1006/jtbi.1999.1066.
 [1] Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004 [2] Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875 [3] Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure and Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591 [4] Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072 [5] Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441 [6] Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103 [7] Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 [8] Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 [9] Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275 [10] Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 [11] Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383 [12] Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861 [13] J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 [14] Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic and Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85 [15] Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933 [16] Piotr Oprocha. Specification properties and dense distributional chaos. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821 [17] Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347 [18] Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323 [19] Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 [20] Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

2020 Impact Factor: 1.327