\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period

Abstract Related Papers Cited by
  • In this paper, we study bifurcation of the damped Kuramoto-Sivashinsky equation on an odd periodic interval of period $2\lambda$. We fix the control parameter $\alpha \in (0,1)$ and study how the equation bifurcates to attractors as $\lambda$ varies. Using the center manifold analysis, we prove that the bifurcated attractors are homeomorphic to $S^1$ and consist of four or eight singular points and their connecting orbits. We verify the structure of the bifurcated attractors by investigating the stability of each singular point.
    Mathematics Subject Classification: Primary: 37G35, 35B32.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Chaté and P. Manneville, Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58 (1987), 112-115.

    [2]

    Y. Choi and J. Han, Dynamical bifurcation of the damped Kuramoto-Sivashinsky equation, J. Math. Anal. Appl., 421 (2015), 383-398.doi: 10.1016/j.jmaa.2014.07.009.

    [3]

    N. Ecrolani, D. McLaughlin and H. Roitner, Attractors and transients for a perturbed periodics KdV rquation: A nonlinear spectral analysis, J. Nonlin. Sci., 3 (1993), 477-539.doi: 10.1007/BF02429875.

    [4]

    K. Elder, H. w. Xi, M. Deans and J. Gunton, Spatiotemporal chaos in the damped Kuramot-Sivashinsky equation, AIP Conf. Proc., 342 (1995), 702-708.

    [5]

    K. R. Edler, J. D. Gunton and N. Goldenfled, Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinky equation, Phys. Rev. E, 56 (1997), 1631-1634.

    [6]

    H. Gao and Q. Xiao, Bifurcation analysis of the 1D and 2D generalized Swift-Hohenberg equation, Intern. J. Bifur. Chaos, 20 (2010), 619-643.doi: 10.1142/S0218127410025922.

    [7]

    H. Gomez and J. Paris, Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinky equation, Phys. Rev E, 83 (2011), 046702.

    [8]

    J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Dis. Cont. Dyn. Sys. B, 17 (2012), 2431-2449.doi: 10.3934/dcdsb.2012.17.2431.

    [9]

    J. Han and M. Yari, Dynamic bifurcation of the periodic Swift-Hohenberg equation, Bull. Korean Math. Soc., 49 (2012), 923-937.doi: 10.4134/BKMS.2012.49.5.923.

    [10]

    T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005.doi: 10.1142/9789812701152.

    [11]

    T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014.doi: 10.1007/978-1-4614-8963-4.

    [12]

    T. Ma and S. Wang, Rayleigh-Bénard convection: Dynamics and structure in the physical space, Comm. Math. Sci., 5 (2007), 553-574.doi: 10.4310/CMS.2007.v5.n3.a3.

    [13]

    T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Dis. Cont. Dyn. Sys. B, 11 (2009), 741-784.doi: 10.3934/dcdsb.2009.11.741.

    [14]

    C. Misbah and A. Valance, Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation, Phys. Rev. E, 49 (1994), 166-183.doi: 10.1103/PhysRevE.49.166.

    [15]

    M. Paniconi and K. Edler, Stationary, dynamical, and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation, Phys. Rev. E, 56 (1997), 2713-2721.doi: 10.1103/PhysRevE.56.2713.

    [16]

    L. A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equations, Phys. D, 194 (2004), 95-126.doi: 10.1016/j.physd.2004.01.043.

    [17]

    L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Sys., 6 (2007), 208-235.doi: 10.1137/050647232.

    [18]

    S. Vogel and S. Linz, Contiuum modeling of sputter erosion under normal incidence: Interplay between nonlocality and nonlinearity, Phys. Rev. B, 72 (2005), 035416.

    [19]

    Q. Xiao and H. Gao, Bifurcation analysis of the Swift-Hohenberg equation with quitic nonlinearity, Intern. J. Bifur. Chaos, 19 (2009), 2927-2937.doi: 10.1142/S0218127409024542.

    [20]

    M. Yari, Attractor bifurcation and final patterns of the $N$-dimensional and generalized Swift-Hohenberg equations, Dis. Cont. Dyn. Sys. B, 7 (2007), 441-456.doi: 10.3934/dcdsb.2007.7.441.

    [21]

    M. Zhen, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer Series in Computational Mathematics, 28, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-662-04177-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return