Citation: |
[1] |
H. Chaté and P. Manneville, Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58 (1987), 112-115. |
[2] |
Y. Choi and J. Han, Dynamical bifurcation of the damped Kuramoto-Sivashinsky equation, J. Math. Anal. Appl., 421 (2015), 383-398.doi: 10.1016/j.jmaa.2014.07.009. |
[3] |
N. Ecrolani, D. McLaughlin and H. Roitner, Attractors and transients for a perturbed periodics KdV rquation: A nonlinear spectral analysis, J. Nonlin. Sci., 3 (1993), 477-539.doi: 10.1007/BF02429875. |
[4] |
K. Elder, H. w. Xi, M. Deans and J. Gunton, Spatiotemporal chaos in the damped Kuramot-Sivashinsky equation, AIP Conf. Proc., 342 (1995), 702-708. |
[5] |
K. R. Edler, J. D. Gunton and N. Goldenfled, Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinky equation, Phys. Rev. E, 56 (1997), 1631-1634. |
[6] |
H. Gao and Q. Xiao, Bifurcation analysis of the 1D and 2D generalized Swift-Hohenberg equation, Intern. J. Bifur. Chaos, 20 (2010), 619-643.doi: 10.1142/S0218127410025922. |
[7] |
H. Gomez and J. Paris, Numerical simulation of asymptotic states of the damped Kuramoto-Sivashinky equation, Phys. Rev E, 83 (2011), 046702. |
[8] |
J. Han and C.-H. Hsia, Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition, Dis. Cont. Dyn. Sys. B, 17 (2012), 2431-2449.doi: 10.3934/dcdsb.2012.17.2431. |
[9] |
J. Han and M. Yari, Dynamic bifurcation of the periodic Swift-Hohenberg equation, Bull. Korean Math. Soc., 49 (2012), 923-937.doi: 10.4134/BKMS.2012.49.5.923. |
[10] |
T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005.doi: 10.1142/9789812701152. |
[11] |
T. Ma and S. Wang, Phase Transition Dynamics, Springer, New York, 2014.doi: 10.1007/978-1-4614-8963-4. |
[12] |
T. Ma and S. Wang, Rayleigh-Bénard convection: Dynamics and structure in the physical space, Comm. Math. Sci., 5 (2007), 553-574.doi: 10.4310/CMS.2007.v5.n3.a3. |
[13] |
T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Dis. Cont. Dyn. Sys. B, 11 (2009), 741-784.doi: 10.3934/dcdsb.2009.11.741. |
[14] |
C. Misbah and A. Valance, Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation, Phys. Rev. E, 49 (1994), 166-183.doi: 10.1103/PhysRevE.49.166. |
[15] |
M. Paniconi and K. Edler, Stationary, dynamical, and chaotic states of the two-dimensional damped Kuramoto-Sivashinsky equation, Phys. Rev. E, 56 (1997), 2713-2721.doi: 10.1103/PhysRevE.56.2713. |
[16] |
L. A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equations, Phys. D, 194 (2004), 95-126.doi: 10.1016/j.physd.2004.01.043. |
[17] |
L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Sys., 6 (2007), 208-235.doi: 10.1137/050647232. |
[18] |
S. Vogel and S. Linz, Contiuum modeling of sputter erosion under normal incidence: Interplay between nonlocality and nonlinearity, Phys. Rev. B, 72 (2005), 035416. |
[19] |
Q. Xiao and H. Gao, Bifurcation analysis of the Swift-Hohenberg equation with quitic nonlinearity, Intern. J. Bifur. Chaos, 19 (2009), 2927-2937.doi: 10.1142/S0218127409024542. |
[20] |
M. Yari, Attractor bifurcation and final patterns of the $N$-dimensional and generalized Swift-Hohenberg equations, Dis. Cont. Dyn. Sys. B, 7 (2007), 441-456.doi: 10.3934/dcdsb.2007.7.441. |
[21] |
M. Zhen, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer Series in Computational Mathematics, 28, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-662-04177-2. |