September  2015, 20(7): 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

Lyapunov functions and global stability for a discretized multigroup SIR epidemic model

1. 

Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, China, China, China

Received  January 2014 Revised  January 2015 Published  July 2015

In this paper, a discretized multigroup SIR epidemic model is constructed by applying a nonstandard finite difference schemes to a class of continuous time multigroup SIR epidemic models. This discretization scheme has the same dynamics with the original differential system independent of the time step, such as positivity of the solutions and the stability of the equilibria. Discrete-time analogue of Lyapunov functions is introduced to show that the global asymptotic stability is fully determined by the basic reproduction number $R_0$.
Citation: Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971
References:
[1]

J. Bruggeman, H. Burchard, B. W. Kooi and B. Sommeijer, A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems,, Appl. Numer. Math., 57 (2007), 36. doi: 10.1016/j.apnum.2005.12.001.

[2]

D. Ding and X. Ding, Global stability of multi-group vaccination epidemic models with delays,, Nonlinear Anal.-Real World Appl., 12 (2011), 1991. doi: 10.1016/j.nonrwa.2010.12.015.

[3]

D. Ding, X. Wang and X. Ding, Global Stability of Multigroup Dengue Disease Transmission Model,, Journal of Applied Mathematics., 2012 (2012). doi: 10.1155/2012/342472.

[4]

D. Ding and X. Ding, A non-standard finite difference scheme for an epidemic model with vaccination,, J. Differ. Equ. Appl., 19 (2013), 179. doi: 10.1080/10236198.2011.614606.

[5]

Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates,, J. Differ. Equ. Appl., 18 (2012), 1163. doi: 10.1080/10236198.2011.555405.

[6]

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR epidemic models,, Math. Biosci. Eng., 7 (2010), 347. doi: 10.3934/mbe.2010.7.347.

[7]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513.

[8]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Can. Appl. Math. Q., 14 (2006), 259.

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review., 42 (2000), 599. doi: 10.1137/S0036144500371907.

[10]

R. A. Horn and C. R. Johnson, Martrix Analysis,, Post and Telecom Press, (2005).

[11]

S. Jang and N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives,, Can. Appl. Math. Q., 11 (2003), 93.

[12]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5.

[13]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5.

[14]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9.

[15]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017.

[16]

R. E. Mickens, In: Applications of Nonstandard Finite Difference Schemes,, World Scientific, (2000). doi: 10.1142/9789812813251.

[17]

R. E. Mickens, Advances in the Applications of Nonstandard Finite Diffference Schemes,, World Scientific, (2005). doi: 10.1142/9789812703316.

[18]

R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations,, World Scientific, (1994).

[19]

S. M. Moghadas and A. B. Gumel, A mathematical study of a model for childhood diseases with non-permanent immunity,, J. Comput. Appl. Math., 157 (2003), 347. doi: 10.1016/S0377-0427(03)00416-3.

[20]

K. C. Patidar, On the use of nonstandard finite difference methods,, J. Differ. Equ. Appl. 11 (2005), 11 (2005), 735. doi: 10.1080/10236190500127471.

[21]

L.-I. W. Roeger, Nonstandard finite-difference schemes for the Lotka-Volterra systems: Generalization of Mickens's method,, J. Differ. Equ. Appl., 12 (2006), 937. doi: 10.1080/10236190600909380.

[22]

L.-I. W. Roeger, Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes,, Discret. Contin. Dyn. Syst. B., 9 (2008), 415. doi: 10.3934/dcdsb.2008.9.415.

[23]

L.-I. W. Roeger and R. Gelca, Dynamically consistent discrete-time Lotka-Volterra competition models,, Discret. Contin. Dyn. Syst., (2009), 650.

[24]

L.-I. W. Roeger, Exact nonstandard finite-difference methods for a linear system-the case of centers,, J. Differ. Equ. Appl., 14 (2008), 381. doi: 10.1080/10236190701607669.

[25]

L.-I. W. Roeger, A nonstandard discretization method for Lotka-Volterra models that preserves periodic solutions,, J. Differ. Equ. Appl., 11 (2005), 721. doi: 10.1080/10236190500127612.

[26]

M. Sekiguchi and E. Ishiwata, Global dynamics of a discretized SIRS epidemic model with time delay,, J. Math. Anal. Appl., 371 (2010), 195. doi: 10.1016/j.jmaa.2010.05.007.

[27]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal.-Real World Appl., 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016.

[28]

Y. Wang, Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3967. doi: 10.1016/j.cnsns.2012.02.023.

[29]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal.-Real World Appl., 11 (2010), 995. doi: 10.1016/j.nonrwa.2009.01.040.

[30]

D. Zwillinger, Handbook of Differential Equations,, Academic Press, (1989).

show all references

References:
[1]

J. Bruggeman, H. Burchard, B. W. Kooi and B. Sommeijer, A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems,, Appl. Numer. Math., 57 (2007), 36. doi: 10.1016/j.apnum.2005.12.001.

[2]

D. Ding and X. Ding, Global stability of multi-group vaccination epidemic models with delays,, Nonlinear Anal.-Real World Appl., 12 (2011), 1991. doi: 10.1016/j.nonrwa.2010.12.015.

[3]

D. Ding, X. Wang and X. Ding, Global Stability of Multigroup Dengue Disease Transmission Model,, Journal of Applied Mathematics., 2012 (2012). doi: 10.1155/2012/342472.

[4]

D. Ding and X. Ding, A non-standard finite difference scheme for an epidemic model with vaccination,, J. Differ. Equ. Appl., 19 (2013), 179. doi: 10.1080/10236198.2011.614606.

[5]

Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo and A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates,, J. Differ. Equ. Appl., 18 (2012), 1163. doi: 10.1080/10236198.2011.555405.

[6]

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR epidemic models,, Math. Biosci. Eng., 7 (2010), 347. doi: 10.3934/mbe.2010.7.347.

[7]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513.

[8]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Can. Appl. Math. Q., 14 (2006), 259.

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review., 42 (2000), 599. doi: 10.1137/S0036144500371907.

[10]

R. A. Horn and C. R. Johnson, Martrix Analysis,, Post and Telecom Press, (2005).

[11]

S. Jang and N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives,, Can. Appl. Math. Q., 11 (2003), 93.

[12]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5.

[13]

A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population,, Math. Biosci., 28 (1976), 221. doi: 10.1016/0025-5564(76)90125-5.

[14]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9.

[15]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017.

[16]

R. E. Mickens, In: Applications of Nonstandard Finite Difference Schemes,, World Scientific, (2000). doi: 10.1142/9789812813251.

[17]

R. E. Mickens, Advances in the Applications of Nonstandard Finite Diffference Schemes,, World Scientific, (2005). doi: 10.1142/9789812703316.

[18]

R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations,, World Scientific, (1994).

[19]

S. M. Moghadas and A. B. Gumel, A mathematical study of a model for childhood diseases with non-permanent immunity,, J. Comput. Appl. Math., 157 (2003), 347. doi: 10.1016/S0377-0427(03)00416-3.

[20]

K. C. Patidar, On the use of nonstandard finite difference methods,, J. Differ. Equ. Appl. 11 (2005), 11 (2005), 735. doi: 10.1080/10236190500127471.

[21]

L.-I. W. Roeger, Nonstandard finite-difference schemes for the Lotka-Volterra systems: Generalization of Mickens's method,, J. Differ. Equ. Appl., 12 (2006), 937. doi: 10.1080/10236190600909380.

[22]

L.-I. W. Roeger, Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes,, Discret. Contin. Dyn. Syst. B., 9 (2008), 415. doi: 10.3934/dcdsb.2008.9.415.

[23]

L.-I. W. Roeger and R. Gelca, Dynamically consistent discrete-time Lotka-Volterra competition models,, Discret. Contin. Dyn. Syst., (2009), 650.

[24]

L.-I. W. Roeger, Exact nonstandard finite-difference methods for a linear system-the case of centers,, J. Differ. Equ. Appl., 14 (2008), 381. doi: 10.1080/10236190701607669.

[25]

L.-I. W. Roeger, A nonstandard discretization method for Lotka-Volterra models that preserves periodic solutions,, J. Differ. Equ. Appl., 11 (2005), 721. doi: 10.1080/10236190500127612.

[26]

M. Sekiguchi and E. Ishiwata, Global dynamics of a discretized SIRS epidemic model with time delay,, J. Math. Anal. Appl., 371 (2010), 195. doi: 10.1016/j.jmaa.2010.05.007.

[27]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal.-Real World Appl., 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016.

[28]

Y. Wang, Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback,, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3967. doi: 10.1016/j.cnsns.2012.02.023.

[29]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal.-Real World Appl., 11 (2010), 995. doi: 10.1016/j.nonrwa.2009.01.040.

[30]

D. Zwillinger, Handbook of Differential Equations,, Academic Press, (1989).

[1]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[2]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[3]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[4]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[5]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[6]

Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685

[7]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[8]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[9]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[10]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[11]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[12]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[13]

Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001

[14]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[15]

Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297

[16]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[17]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[18]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[19]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[20]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]