September  2015, 20(7): 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

Reorientation of smectic a liquid crystals by magnetic fields

1. 

Mathematics Department, University of California, Santa Barbara, CA 93106, United States

2. 

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States

Received  December 2013 Revised  March 2015 Published  July 2015

We consider the de Gennes' smectic A free energy with a complex order parameter in order to study the influence of magnetic fields on the smectic layers in the strong field limit as well as near the critical field. In previous work by the authors [6], the critical field and a description of the layer undulations at the instability were obtained using $\Gamma$-convergence and bifurcation theory. It was proved that the critical field is lowered by a factor of $\sqrt{\pi}$ compared to the classical Helfrich Hurault theory by using natural boundary conditions for the complex order parameter, but still with strong anchoring condition for the director. In this paper, we present numerical simulations for undulations at the critical field as well as the layer and director configurations well above the critical field. We show that the estimate of the critical field and layer configuration at the critical field agree with the analysis in [6]. Furthermore, the changes in smectic order density as well as layer and director will be illustrated numerically as the field increases well above the critical field. This provides the smectic layers' melting along the bounding plates where the layers are fixed. In the natural case, at a high field, we prove that the directors align with the applied field and the layers are homeotropically aligned in the domain, keeping the smectic order density at a constant in $L^2$.
Citation: Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983
References:
[1]

V. G. Čigrinov, Electrooptic Effects in Liquid Crystal Materials,, Springer, (1996).   Google Scholar

[2]

P. G. de Gennes, An analogy between superconductors and smectics A,, Solid State Communications, 10 (1972), 753.   Google Scholar

[3]

P. G. de Gennes, The Physics of Liquid Crystals,, International Series of Monographs on Physics, (1974).   Google Scholar

[4]

W. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. Numer. Anal., 38 (2000), 1647.  doi: 10.1137/S0036142999352199.  Google Scholar

[5]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 216.  doi: 10.1109/JPROC.2004.840301.  Google Scholar

[6]

C. J. García-Cervera and S. Joo, Analytic description of layer undulations in smectic $A$ liquid crystals,, Arch. Ration. Mech. Anal., 203 (2012), 1.  doi: 10.1007/s00205-011-0442-y.  Google Scholar

[7]

C. J. García-Cervera and S. Joo, Analysis and simulations of the Chen-Lubensky energy for smectic liquid crystals: Onset of undulations,, Commun. Math. Sci., 12 (2014), 1155.  doi: 10.4310/CMS.2014.v12.n6.a7.  Google Scholar

[8]

T. Giorgi, C. J. García-Cervera and S. Joo, Sawtooth profile in smectic $A$ liquid crystals,, submitted., ().   Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[10]

W. Helfrich, Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,, The Journal of Chemical Physics, 55 (1971), 839.  doi: 10.1063/1.1676151.  Google Scholar

[11]

J. P. Hurault, Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,, The Journal of Chemical Physics, 59 (1973), 2068.  doi: 10.1063/1.1680293.  Google Scholar

[12]

T. Ishikawa and O. D. Lavrentovich, Undulations in a confined lamellar system with surface anchoring,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.030501.  Google Scholar

[13]

T. Ishikawa and O. D. Lavrentovich, Defects and undulation in layered liquid crystals,, in Defects in Liquid Crystals: Computer Simulations, (2001), 271.  doi: 10.1007/978-94-010-0512-8_11.  Google Scholar

[14]

T. Ishikawa and O. Lavrentovich, Dislocation profile in cholesteric finger texture,, Physical Review E, 60 (1999).  doi: 10.1103/PhysRevE.60.R5037.  Google Scholar

[15]

O. Lavrentovich, M. Kleman and V. M. Pergamenshchik, Nucleation of focal conic domains in smectic a liquid crystals,, Journal de Physique II, 4 (1994), 377.  doi: 10.1051/jp2:1994135.  Google Scholar

[16]

F. Lin and X. B. Pan, Magnetic field-induced instabilities in liquid crystals,, SIAM J. Math. Anal., 38 (): 1588.  doi: 10.1137/050638643.  Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital., 14 (1977), 285.   Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[19]

B. I. Senyuk, I. I. Smalyukh and O. D. Lavrentovich, Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011712.  Google Scholar

[20]

M. Struwe, Heat-flow methods for harmonic maps of surfaces and applications to free boundary problems,, in Partial Differential Equations (Rio de Janeiro, (1986), 293.  doi: 10.1007/BFb0100801.  Google Scholar

show all references

References:
[1]

V. G. Čigrinov, Electrooptic Effects in Liquid Crystal Materials,, Springer, (1996).   Google Scholar

[2]

P. G. de Gennes, An analogy between superconductors and smectics A,, Solid State Communications, 10 (1972), 753.   Google Scholar

[3]

P. G. de Gennes, The Physics of Liquid Crystals,, International Series of Monographs on Physics, (1974).   Google Scholar

[4]

W. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. Numer. Anal., 38 (2000), 1647.  doi: 10.1137/S0036142999352199.  Google Scholar

[5]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 216.  doi: 10.1109/JPROC.2004.840301.  Google Scholar

[6]

C. J. García-Cervera and S. Joo, Analytic description of layer undulations in smectic $A$ liquid crystals,, Arch. Ration. Mech. Anal., 203 (2012), 1.  doi: 10.1007/s00205-011-0442-y.  Google Scholar

[7]

C. J. García-Cervera and S. Joo, Analysis and simulations of the Chen-Lubensky energy for smectic liquid crystals: Onset of undulations,, Commun. Math. Sci., 12 (2014), 1155.  doi: 10.4310/CMS.2014.v12.n6.a7.  Google Scholar

[8]

T. Giorgi, C. J. García-Cervera and S. Joo, Sawtooth profile in smectic $A$ liquid crystals,, submitted., ().   Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[10]

W. Helfrich, Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,, The Journal of Chemical Physics, 55 (1971), 839.  doi: 10.1063/1.1676151.  Google Scholar

[11]

J. P. Hurault, Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,, The Journal of Chemical Physics, 59 (1973), 2068.  doi: 10.1063/1.1680293.  Google Scholar

[12]

T. Ishikawa and O. D. Lavrentovich, Undulations in a confined lamellar system with surface anchoring,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.030501.  Google Scholar

[13]

T. Ishikawa and O. D. Lavrentovich, Defects and undulation in layered liquid crystals,, in Defects in Liquid Crystals: Computer Simulations, (2001), 271.  doi: 10.1007/978-94-010-0512-8_11.  Google Scholar

[14]

T. Ishikawa and O. Lavrentovich, Dislocation profile in cholesteric finger texture,, Physical Review E, 60 (1999).  doi: 10.1103/PhysRevE.60.R5037.  Google Scholar

[15]

O. Lavrentovich, M. Kleman and V. M. Pergamenshchik, Nucleation of focal conic domains in smectic a liquid crystals,, Journal de Physique II, 4 (1994), 377.  doi: 10.1051/jp2:1994135.  Google Scholar

[16]

F. Lin and X. B. Pan, Magnetic field-induced instabilities in liquid crystals,, SIAM J. Math. Anal., 38 (): 1588.  doi: 10.1137/050638643.  Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital., 14 (1977), 285.   Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[19]

B. I. Senyuk, I. I. Smalyukh and O. D. Lavrentovich, Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011712.  Google Scholar

[20]

M. Struwe, Heat-flow methods for harmonic maps of surfaces and applications to free boundary problems,, in Partial Differential Equations (Rio de Janeiro, (1986), 293.  doi: 10.1007/BFb0100801.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]