September  2015, 20(7): 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

Reorientation of smectic a liquid crystals by magnetic fields

1. 

Mathematics Department, University of California, Santa Barbara, CA 93106, United States

2. 

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, United States

Received  December 2013 Revised  March 2015 Published  July 2015

We consider the de Gennes' smectic A free energy with a complex order parameter in order to study the influence of magnetic fields on the smectic layers in the strong field limit as well as near the critical field. In previous work by the authors [6], the critical field and a description of the layer undulations at the instability were obtained using $\Gamma$-convergence and bifurcation theory. It was proved that the critical field is lowered by a factor of $\sqrt{\pi}$ compared to the classical Helfrich Hurault theory by using natural boundary conditions for the complex order parameter, but still with strong anchoring condition for the director. In this paper, we present numerical simulations for undulations at the critical field as well as the layer and director configurations well above the critical field. We show that the estimate of the critical field and layer configuration at the critical field agree with the analysis in [6]. Furthermore, the changes in smectic order density as well as layer and director will be illustrated numerically as the field increases well above the critical field. This provides the smectic layers' melting along the bounding plates where the layers are fixed. In the natural case, at a high field, we prove that the directors align with the applied field and the layers are homeotropically aligned in the domain, keeping the smectic order density at a constant in $L^2$.
Citation: Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983
References:
[1]

V. G. Čigrinov, Electrooptic Effects in Liquid Crystal Materials,, Springer, (1996). Google Scholar

[2]

P. G. de Gennes, An analogy between superconductors and smectics A,, Solid State Communications, 10 (1972), 753. Google Scholar

[3]

P. G. de Gennes, The Physics of Liquid Crystals,, International Series of Monographs on Physics, (1974). Google Scholar

[4]

W. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. Numer. Anal., 38 (2000), 1647. doi: 10.1137/S0036142999352199. Google Scholar

[5]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 216. doi: 10.1109/JPROC.2004.840301. Google Scholar

[6]

C. J. García-Cervera and S. Joo, Analytic description of layer undulations in smectic $A$ liquid crystals,, Arch. Ration. Mech. Anal., 203 (2012), 1. doi: 10.1007/s00205-011-0442-y. Google Scholar

[7]

C. J. García-Cervera and S. Joo, Analysis and simulations of the Chen-Lubensky energy for smectic liquid crystals: Onset of undulations,, Commun. Math. Sci., 12 (2014), 1155. doi: 10.4310/CMS.2014.v12.n6.a7. Google Scholar

[8]

T. Giorgi, C. J. García-Cervera and S. Joo, Sawtooth profile in smectic $A$ liquid crystals,, submitted., (). Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[10]

W. Helfrich, Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,, The Journal of Chemical Physics, 55 (1971), 839. doi: 10.1063/1.1676151. Google Scholar

[11]

J. P. Hurault, Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,, The Journal of Chemical Physics, 59 (1973), 2068. doi: 10.1063/1.1680293. Google Scholar

[12]

T. Ishikawa and O. D. Lavrentovich, Undulations in a confined lamellar system with surface anchoring,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.030501. Google Scholar

[13]

T. Ishikawa and O. D. Lavrentovich, Defects and undulation in layered liquid crystals,, in Defects in Liquid Crystals: Computer Simulations, (2001), 271. doi: 10.1007/978-94-010-0512-8_11. Google Scholar

[14]

T. Ishikawa and O. Lavrentovich, Dislocation profile in cholesteric finger texture,, Physical Review E, 60 (1999). doi: 10.1103/PhysRevE.60.R5037. Google Scholar

[15]

O. Lavrentovich, M. Kleman and V. M. Pergamenshchik, Nucleation of focal conic domains in smectic a liquid crystals,, Journal de Physique II, 4 (1994), 377. doi: 10.1051/jp2:1994135. Google Scholar

[16]

F. Lin and X. B. Pan, Magnetic field-induced instabilities in liquid crystals,, SIAM J. Math. Anal., 38 (): 1588. doi: 10.1137/050638643. Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital., 14 (1977), 285. Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[19]

B. I. Senyuk, I. I. Smalyukh and O. D. Lavrentovich, Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.011712. Google Scholar

[20]

M. Struwe, Heat-flow methods for harmonic maps of surfaces and applications to free boundary problems,, in Partial Differential Equations (Rio de Janeiro, (1986), 293. doi: 10.1007/BFb0100801. Google Scholar

show all references

References:
[1]

V. G. Čigrinov, Electrooptic Effects in Liquid Crystal Materials,, Springer, (1996). Google Scholar

[2]

P. G. de Gennes, An analogy between superconductors and smectics A,, Solid State Communications, 10 (1972), 753. Google Scholar

[3]

P. G. de Gennes, The Physics of Liquid Crystals,, International Series of Monographs on Physics, (1974). Google Scholar

[4]

W. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. Numer. Anal., 38 (2000), 1647. doi: 10.1137/S0036142999352199. Google Scholar

[5]

M. Frigo and S. G. Johnson, The design and implementation of FFTW3,, Proceedings of the IEEE, 93 (2005), 216. doi: 10.1109/JPROC.2004.840301. Google Scholar

[6]

C. J. García-Cervera and S. Joo, Analytic description of layer undulations in smectic $A$ liquid crystals,, Arch. Ration. Mech. Anal., 203 (2012), 1. doi: 10.1007/s00205-011-0442-y. Google Scholar

[7]

C. J. García-Cervera and S. Joo, Analysis and simulations of the Chen-Lubensky energy for smectic liquid crystals: Onset of undulations,, Commun. Math. Sci., 12 (2014), 1155. doi: 10.4310/CMS.2014.v12.n6.a7. Google Scholar

[8]

T. Giorgi, C. J. García-Cervera and S. Joo, Sawtooth profile in smectic $A$ liquid crystals,, submitted., (). Google Scholar

[9]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[10]

W. Helfrich, Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,, The Journal of Chemical Physics, 55 (1971), 839. doi: 10.1063/1.1676151. Google Scholar

[11]

J. P. Hurault, Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,, The Journal of Chemical Physics, 59 (1973), 2068. doi: 10.1063/1.1680293. Google Scholar

[12]

T. Ishikawa and O. D. Lavrentovich, Undulations in a confined lamellar system with surface anchoring,, Phys. Rev. E, 63 (2001). doi: 10.1103/PhysRevE.63.030501. Google Scholar

[13]

T. Ishikawa and O. D. Lavrentovich, Defects and undulation in layered liquid crystals,, in Defects in Liquid Crystals: Computer Simulations, (2001), 271. doi: 10.1007/978-94-010-0512-8_11. Google Scholar

[14]

T. Ishikawa and O. Lavrentovich, Dislocation profile in cholesteric finger texture,, Physical Review E, 60 (1999). doi: 10.1103/PhysRevE.60.R5037. Google Scholar

[15]

O. Lavrentovich, M. Kleman and V. M. Pergamenshchik, Nucleation of focal conic domains in smectic a liquid crystals,, Journal de Physique II, 4 (1994), 377. doi: 10.1051/jp2:1994135. Google Scholar

[16]

F. Lin and X. B. Pan, Magnetic field-induced instabilities in liquid crystals,, SIAM J. Math. Anal., 38 (): 1588. doi: 10.1137/050638643. Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital., 14 (1977), 285. Google Scholar

[18]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[19]

B. I. Senyuk, I. I. Smalyukh and O. D. Lavrentovich, Undulations of lamellar liquid crystals in cells with finite surface anchoring near and well above the threshold,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.011712. Google Scholar

[20]

M. Struwe, Heat-flow methods for harmonic maps of surfaces and applications to free boundary problems,, in Partial Differential Equations (Rio de Janeiro, (1986), 293. doi: 10.1007/BFb0100801. Google Scholar

[1]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[2]

Blanca Climent-Ezquerra, Francisco Guillén-González. Global in time solution and time-periodicity for a smectic-A liquid crystal model. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1473-1493. doi: 10.3934/cpaa.2010.9.1473

[3]

Qiumei Huang, Xiaofeng Yang, Xiaoming He. Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2177-2192. doi: 10.3934/dcdsb.2018230

[4]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[5]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[6]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[7]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[8]

Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Smooth control of nanowires by means of a magnetic field. Communications on Pure & Applied Analysis, 2009, 8 (3) : 871-879. doi: 10.3934/cpaa.2009.8.871

[9]

Nurlan Dairbekov, Gunther Uhlmann. Reconstructing the metric and magnetic field from the scattering relation. Inverse Problems & Imaging, 2010, 4 (3) : 397-409. doi: 10.3934/ipi.2010.4.397

[10]

Hanming Zhou. Lens rigidity with partial data in the presence of a magnetic field. Inverse Problems & Imaging, 2018, 12 (6) : 1365-1387. doi: 10.3934/ipi.2018057

[11]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic & Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[12]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[13]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[14]

Mingqi Xiang, Patrizia Pucci, Marco Squassina, Binlin Zhang. Nonlocal Schrödinger-Kirchhoff equations with external magnetic field. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1631-1649. doi: 10.3934/dcds.2017067

[15]

Amer Rasheed, Aziz Belmiloudi, Fabrice Mahé. Dynamics of dendrite growth in a binary alloy with magnetic field effect. Conference Publications, 2011, 2011 (Special) : 1224-1233. doi: 10.3934/proc.2011.2011.1224

[16]

Yernat M. Assylbekov, Hanming Zhou. Boundary and scattering rigidity problems in the presence of a magnetic field and a potential. Inverse Problems & Imaging, 2015, 9 (4) : 935-950. doi: 10.3934/ipi.2015.9.935

[17]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[18]

Naoufel Ben Abdallah, Hédia Chaker. Mixed high field and diffusion asymptotics for the fermionic Boltzmann equation. Kinetic & Related Models, 2009, 2 (3) : 403-424. doi: 10.3934/krm.2009.2.403

[19]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

[20]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]