Citation: |
[1] |
R. Adams and J. Fournier, Sobolev Spaces, $2^{nd}$ edition, Academic Press, 2003. |
[2] |
N. Ansini, A. Braides and V. Valente, Multiscale analysis by $\Gamma$-convergence of a one-dimensional nonlocal functional related to a shell-membrane transition, SIAM J. Math. Anal., 38 (2006), 944-976.doi: 10.1137/050630829. |
[3] |
P. Bauman and Phillips, Analysis and stability of bent-core liquid crystal fibers, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1707-1728.doi: 10.3934/dcdsb.2012.17.1707. |
[4] |
P. Bauman, D. Phillips and J. Park., Existence of solutions to boundary value problems for smectic liquid crystals, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 243-257.doi: 10.3934/dcdss.2015.8.243. |
[5] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011. |
[6] |
J.-H. Chen and T. C. Lubensky, Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions, Phys. Rev. A, 14 (1976), 1202-1207.doi: 10.1103/PhysRevA.14.1202. |
[7] |
A. Eremin and A. Jákli, Polar bent-shape liquid crystals - from molecular bend to layer splay and chirality, Soft Matter, 9 (2013), 615-637.doi: 10.1039/C2SM26780B. |
[8] |
E. Gorecka, N. Vaupotič, D. Pociecha, M. Čepič and J. Mieczkowski, Switching mechanism in polar columnar mesophases made of bent-core molecules, ChemPhysChem, 6 (2005), 1087-1093.doi: 10.1002/cphc.200400623. |
[9] |
S. Joo and D. Phillips, Chiral nematic toward smectic liquid crystals, Comm. Math. Phys., 269 (2007), 369-399.doi: 10.1007/s00220-006-0132-z. |
[10] |
S. T. Lagerwall, Ferroelectric and antiferroelectric liquid crystals, Encyclopedia of Materials: Science and Technology, (2001), 3044-3063.doi: 10.1016/B0-08-043152-6/00545-3. |
[11] |
I. Luk'yanchuk, Phase transition between the cholesteric and twist grain boundary C phases, Phys. Rev. E, 57 (1998), 574-581. |
[12] |
I. Muševič, R. Blinc and B. Žekš, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals, World Scientific Publishing Company, 2000. |
[13] |
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, $2^{nd}$ edition, Clarendon Press, Oxford, 1993. |
[14] |
L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for non convex discrete systems, Math. Models Methods Appl. Sci., 21 (2011), 777-817.doi: 10.1142/S0218202511005210. |
[15] |
I. W. Stewart, The Static and Dynamic Continuum theory of Liquid Crystals, Taylor & Francis, 2004. |
[16] |
N. Vaupotič and M. Čopič, Polarization modulation instability in liquid crystals with spontaneous chiral symmetry breaking, Phys. Rev. E, 72 (2005), 031701. |
[17] |
E. G. Virga., Variational Theories for Liquid Crystals, Chapman & Hall, London, 1994.doi: 10.1007/978-1-4899-2867-2. |