September  2015, 20(7): 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

Protection zone in a modified Lotka-Volterra model

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024

Received  January 2014 Revised  May 2015 Published  July 2015

This paper studies the dynamic behavior of solutions to a modified Lotka-Volterra reaction-diffusion system with homogeneous Neumann boundary conditions, for which a protection zone should be created to prevent the extinction of the prey only if the prey's growth rate is small. We find a critical size of the protection zone, determined by the ratio of the predation rate and the refuge ability, to ensure the existence, uniqueness and global asymptotic stability of positive steady states for general predator's growth rate $\mu>0$. Bellow the critical size the dynamics of the model would be similar to the case without protection zones. The known uniqueness results for the protection problems with other functional responses, e.g., Holling II model, Leslie model, Beddington-DeAngelis model, were all required that the predator's growth rate $\mu>0$ is large enough. Such a large $\mu$ assumption is not needed for the uniqueness and asymptotic results to the modified Lotka-Volterra reaction-diffusion system considered in this paper.
Citation: Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027
References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331.  doi: 10.2307/3866.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the coexistence of competing species,, J. Math. Biol., 37 (1998), 103.  doi: 10.1007/s002850050122.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 257 (2001), 206.  doi: 10.1006/jmaa.2000.7343.  Google Scholar

[4]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence, and spatial heterogeneity,, Rocky Mountain J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[5]

W. Y. Chen and M. X. Wang, Qualitative analysis of predator-prey model with Beddington-DeAngelis functional response and diffudion,, Math. Comput. Modelling, 42 (2005), 31.  doi: 10.1016/j.mcm.2005.05.013.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for tropic interaction,, Ecology, 56 (1975), 881.  doi: 10.2307/1936298.  Google Scholar

[8]

Y. H. Du and X. Liang, A diffusive competition model with a protection zone,, J. Differential Equations, 244 (2008), 61.  doi: 10.1016/j.jde.2007.10.005.  Google Scholar

[9]

Y. H. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equations, 246 (2009), 3932.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[10]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[11]

Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially hererogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[12]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response,, J. Theoret. Biol., 314 (2012), 106.  doi: 10.1016/j.jtbi.2012.08.030.  Google Scholar

[13]

G. H. Guo and J. H. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response,, Nonlinear Anal., 72 (2010), 1632.  doi: 10.1016/j.na.2009.09.003.  Google Scholar

[14]

X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response,, preprint, ().   Google Scholar

[15]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[18]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[19]

Y. X. Wang and W. T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone,, Nonlinear Anal. RWA, 14 (2013), 224.  doi: 10.1016/j.nonrwa.2012.06.001.  Google Scholar

show all references

References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, J. Animal Ecol., 44 (1975), 331.  doi: 10.2307/3866.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the coexistence of competing species,, J. Math. Biol., 37 (1998), 103.  doi: 10.1007/s002850050122.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl., 257 (2001), 206.  doi: 10.1006/jmaa.2000.7343.  Google Scholar

[4]

R. S. Cantrell, C. Cosner and V. Hutson, Ecological models, permanence, and spatial heterogeneity,, Rocky Mountain J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[5]

W. Y. Chen and M. X. Wang, Qualitative analysis of predator-prey model with Beddington-DeAngelis functional response and diffudion,, Math. Comput. Modelling, 42 (2005), 31.  doi: 10.1016/j.mcm.2005.05.013.  Google Scholar

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[7]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for tropic interaction,, Ecology, 56 (1975), 881.  doi: 10.2307/1936298.  Google Scholar

[8]

Y. H. Du and X. Liang, A diffusive competition model with a protection zone,, J. Differential Equations, 244 (2008), 61.  doi: 10.1016/j.jde.2007.10.005.  Google Scholar

[9]

Y. H. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model,, J. Differential Equations, 246 (2009), 3932.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[10]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[11]

Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially hererogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[12]

S. Geritz and M. Gyllenberg, A mechanistic derivation of the DeAngelis-Beddington functional response,, J. Theoret. Biol., 314 (2012), 106.  doi: 10.1016/j.jtbi.2012.08.030.  Google Scholar

[13]

G. H. Guo and J. H. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response,, Nonlinear Anal., 72 (2010), 1632.  doi: 10.1016/j.na.2009.09.003.  Google Scholar

[14]

X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response,, preprint, ().   Google Scholar

[15]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[16]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[17]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[18]

K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone,, J. Differential Equations, 250 (2011), 3988.  doi: 10.1016/j.jde.2011.01.026.  Google Scholar

[19]

Y. X. Wang and W. T. Li, Effect of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone,, Nonlinear Anal. RWA, 14 (2013), 224.  doi: 10.1016/j.nonrwa.2012.06.001.  Google Scholar

[1]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[2]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[3]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[4]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020130

[5]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[6]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[7]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[8]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[9]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[10]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[11]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[12]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[13]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[14]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[15]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[16]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[17]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[18]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020129

[19]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[20]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]