September  2015, 20(7): 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

The reaction-diffusion system for an SIR epidemic model with a free boundary

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin 150080, China

2. 

Natural Science Research Center, Harbin Institute of Technology, Harbin 150080

Received  September 2014 Revised  March 2015 Published  July 2015

The reaction-diffusion system for an $SIR$ epidemic model with a free boundary is studied. This model describes a transmission of diseases. The existence, uniqueness and estimates of the global solution are discussed first. Then some sufficient conditions for the disease vanishing are given. With the help of investigating the long time behavior of solution to the initial and boundary value problem in half space, the long time behavior of the susceptible population $S$ is obtained for the disease vanishing case.
Citation: Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039
References:
[1]

N. F. Britton, Essential Mathematical Biology,, Springer Undergraduate Mathematics Series, (2003).  doi: 10.1007/978-1-4471-0049-2.  Google Scholar

[2]

V. Capasso, Mathematical Structures of Epidemic Systems,, Lecture Notes in Biomath., (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[3]

J. Crank, Free and Moving Boundary Problems,, Oxford Science Publications, (1984).   Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competition,, Discrete Cont. Dyn. Syst. Ser. B, 19 (2014), 3105.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[6]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equa., 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[7]

Y. Kaneko, Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations,, Nonlinear Anal.: Real World Appl., 18 (2014), 121.  doi: 10.1016/j.nonrwa.2014.01.008.  Google Scholar

[8]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction diffusion equation appearing in ecology,, Advan. Math. Sci. Appl., 21 (2011), 467.   Google Scholar

[9]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proceedings of the Royal Society of London Series, 115 (1972), 700.   Google Scholar

[10]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Anal.: Real World Appl., 14 (2013), 1992.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[11]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2355.  doi: 10.3934/dcdsb.2013.18.2355.  Google Scholar

[12]

J. D. Murray, Mathematical Biology. I. An Introduction,, $3^{rd}$ edition, (2002).   Google Scholar

[13]

L. I. Rubenstein, The Stefan Problem,, Translations of Mathematical Monographs, (1971).   Google Scholar

[14]

M. X. Wang, On some free boundary problems of the prey-predator model,, J. Differential Equations, 256 (2014), 3365.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[15]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient,, J. Differential Equations, 258 (2015), 1252.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[16]

M. X. Wang, Spreading and vanishing in the diffusive prey-predator model with a free boundary,, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 311.  doi: 10.1016/j.cnsns.2014.11.016.  Google Scholar

[17]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model,, Nonlinear Anal.: Real World Appl., 24 (2015), 73.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[18]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system,, J. Dyn. Diff. Equat., 26 (2014), 655.  doi: 10.1007/s10884-014-9363-4.  Google Scholar

[19]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, preprint,, , ().   Google Scholar

[20]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment,, Nonlinear Anal.: Real World Appl., 16 (2014), 250.  doi: 10.1016/j.nonrwa.2013.10.003.  Google Scholar

show all references

References:
[1]

N. F. Britton, Essential Mathematical Biology,, Springer Undergraduate Mathematics Series, (2003).  doi: 10.1007/978-1-4471-0049-2.  Google Scholar

[2]

V. Capasso, Mathematical Structures of Epidemic Systems,, Lecture Notes in Biomath., (1993).  doi: 10.1007/978-3-540-70514-7.  Google Scholar

[3]

J. Crank, Free and Moving Boundary Problems,, Oxford Science Publications, (1984).   Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competition,, Discrete Cont. Dyn. Syst. Ser. B, 19 (2014), 3105.  doi: 10.3934/dcdsb.2014.19.3105.  Google Scholar

[6]

J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equa., 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[7]

Y. Kaneko, Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations,, Nonlinear Anal.: Real World Appl., 18 (2014), 121.  doi: 10.1016/j.nonrwa.2014.01.008.  Google Scholar

[8]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction diffusion equation appearing in ecology,, Advan. Math. Sci. Appl., 21 (2011), 467.   Google Scholar

[9]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proceedings of the Royal Society of London Series, 115 (1972), 700.   Google Scholar

[10]

K. I. Kim, Z. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary,, Nonlinear Anal.: Real World Appl., 14 (2013), 1992.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[11]

Z. G. Lin, Y. N. Zhao and P. Zhou, The infected frontier in an SEIR epidemic model with infinite delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2355.  doi: 10.3934/dcdsb.2013.18.2355.  Google Scholar

[12]

J. D. Murray, Mathematical Biology. I. An Introduction,, $3^{rd}$ edition, (2002).   Google Scholar

[13]

L. I. Rubenstein, The Stefan Problem,, Translations of Mathematical Monographs, (1971).   Google Scholar

[14]

M. X. Wang, On some free boundary problems of the prey-predator model,, J. Differential Equations, 256 (2014), 3365.  doi: 10.1016/j.jde.2014.02.013.  Google Scholar

[15]

M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient,, J. Differential Equations, 258 (2015), 1252.  doi: 10.1016/j.jde.2014.10.022.  Google Scholar

[16]

M. X. Wang, Spreading and vanishing in the diffusive prey-predator model with a free boundary,, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 311.  doi: 10.1016/j.cnsns.2014.11.016.  Google Scholar

[17]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model,, Nonlinear Anal.: Real World Appl., 24 (2015), 73.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[18]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system,, J. Dyn. Diff. Equat., 26 (2014), 655.  doi: 10.1007/s10884-014-9363-4.  Google Scholar

[19]

M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, preprint,, , ().   Google Scholar

[20]

J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment,, Nonlinear Anal.: Real World Appl., 16 (2014), 250.  doi: 10.1016/j.nonrwa.2013.10.003.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[15]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[19]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (285)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]