\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion

Abstract / Introduction Related Papers Cited by
  • Using stochastic differential equations with Lévy jumps, this paper studies the effect of environmental stochasticity and random catastrophes on the permanence of Lotka-Volterra facultative systems. Under certain simple assumptions, we establish the sufficient conditions for weak permanence in the mean and extinction of the non-autonomous system, respectively. In particular, a necessary and sufficient condition for permanence and extinction of autonomous system with jump-diffusion are obtained. We generalize some former results under weaker assumptions. Finally, we discuss the biological implications of the main results.
    Mathematics Subject Classification: 60H10, 60J75, 92D25, 62P12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory, Second edition, Harcourt/Academic Press, 2000.

    [2]

    A. Bahar and X. Mao, Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377-400.

    [3]

    J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616.doi: 10.1016/j.na.2011.06.043.

    [4]

    J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375.doi: 10.1016/j.jmaa.2012.02.043.

    [5]

    H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291.doi: 10.1006/jmaa.1997.5403.

    [6]

    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.doi: 10.1137/1.9781611971262.

    [7]

    S. Cheng, Stochastic population systems, Stoch. Anal. Appl., 27 (2009), 854-874.doi: 10.1080/07362990902844348.

    [8]

    H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations, J. Differential Equations, 115 (1995), 173-192.doi: 10.1006/jdeq.1995.1011.

    [9]

    T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.doi: 10.1007/BF02462011.

    [10]

    T. C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.doi: 10.1016/0362-546X(86)90111-2.

    [11]

    M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations, Academic Press, New York, 1991.

    [12]

    B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275.doi: 10.1086/283384.

    [13]

    K. Gopalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol., 19 (1984), 157-168.doi: 10.1007/BF00277744.

    [14]

    K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.doi: 10.1007/978-94-015-7920-9.

    [15]

    T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339.doi: 10.1007/BF00275641.

    [16]

    F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations, Theoret. Population Biol., 14 (1978), 46-61.doi: 10.1016/0040-5809(78)90003-5.

    [17]

    F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters, Theoret. Population Biol., 19 (1981), 1-18.doi: 10.1016/0040-5809(81)90032-0.

    [18]

    F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps, J. Math. Biol., 36 (1997), 169-187.doi: 10.1007/s002850050096.

    [19]

    X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997), 154-173.doi: 10.1006/jmaa.1997.5632.

    [20]

    C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889.doi: 10.3934/dcds.2012.32.867.

    [21]

    V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic, Dordrecht, 1992.doi: 10.1007/978-94-015-8084-7.

    [22]

    Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.

    [23]

    Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems, J. Differential Equations, 103 (1993), 221-246.doi: 10.1006/jdeq.1993.1048.

    [24]

    R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Amer. Natur., 142 (1993), 911-927.

    [25]

    R. Lande, Genetics and demography in biological conservation, Science, 241 (1988), 1455-1460.

    [26]

    R. Sh. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228.doi: 10.1080/17442508008833146.

    [27]

    M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete Contin. Dyn. Syst., 33 (2013), 2495-2522.doi: 10.3934/dcds.2013.33.2495.

    [28]

    M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 402 (2013), 392-403.doi: 10.1016/j.jmaa.2012.11.043.

    [29]

    M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213.doi: 10.1016/j.na.2013.02.018.

    [30]

    X. Mao, Stochastic Differential Equations and Applications, Second edition, Horwood Publishing, Chichester, 2008.doi: 10.1533/9780857099402.

    [31]

    X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405.doi: 10.1016/j.sysconle.2011.02.013.

    [32]

    R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1974.

    [33]

    R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices, Linear Algebra and Appl., 18 (1977), 175-188.doi: 10.1016/0024-3795(77)90073-8.

    [34]

    G. Poole and T. Boullion, A Survey on M-Matrices, SIAM Rev., 16 (1974), 419-427.doi: 10.1137/1016079.

    [35]

    J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise, Statist. Probab. Lett., 83 (2013), 655-664.doi: 10.1016/j.spl.2012.11.003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return