September  2015, 20(7): 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

2. 

School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China, China

Received  May 2014 Revised  February 2015 Published  July 2015

Using stochastic differential equations with Lévy jumps, this paper studies the effect of environmental stochasticity and random catastrophes on the permanence of Lotka-Volterra facultative systems. Under certain simple assumptions, we establish the sufficient conditions for weak permanence in the mean and extinction of the non-autonomous system, respectively. In particular, a necessary and sufficient condition for permanence and extinction of autonomous system with jump-diffusion are obtained. We generalize some former results under weaker assumptions. Finally, we discuss the biological implications of the main results.
Citation: Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069
References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory,, Second edition, (2000).   Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, Int. J. Pure Appl. Math., 11 (2004), 377.   Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, J. Math. Anal. Appl., 391 (2012), 363.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay,, J. Math. Anal. Appl., 210 (1997), 279.  doi: 10.1006/jmaa.1997.5403.  Google Scholar

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[7]

S. Cheng, Stochastic population systems,, Stoch. Anal. Appl., 27 (2009), 854.  doi: 10.1080/07362990902844348.  Google Scholar

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differential Equations, 115 (1995), 173.  doi: 10.1006/jdeq.1995.1011.  Google Scholar

[9]

T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357.  doi: 10.1007/BF02462011.  Google Scholar

[10]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411.  doi: 10.1016/0362-546X(86)90111-2.  Google Scholar

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations,, Academic Press, (1991).   Google Scholar

[12]

B. S. Goh, Stability in models of mutualism,, Amer. Natur., 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems,, J. Math. Biol., 19 (1984), 157.  doi: 10.1007/BF00277744.  Google Scholar

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics,, Kluwer Academic, (1992).  doi: 10.1007/978-94-015-7920-9.  Google Scholar

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations,, J. Math. Biol., 24 (1986), 327.  doi: 10.1007/BF00275641.  Google Scholar

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations,, Theoret. Population Biol., 14 (1978), 46.  doi: 10.1016/0040-5809(78)90003-5.  Google Scholar

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters,, Theoret. Population Biol., 19 (1981), 1.  doi: 10.1016/0040-5809(81)90032-0.  Google Scholar

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps,, J. Math. Biol., 36 (1997), 169.  doi: 10.1007/s002850050096.  Google Scholar

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism,, J. Math. Anal. Appl., 215 (1997), 154.  doi: 10.1006/jmaa.1997.5632.  Google Scholar

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Discrete Contin. Dyn. Syst., 32 (2012), 867.  doi: 10.3934/dcds.2012.32.867.  Google Scholar

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations,, Kluwer Academic, (1992).  doi: 10.1007/978-94-015-8084-7.  Google Scholar

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993).   Google Scholar

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems,, J. Differential Equations, 103 (1993), 221.  doi: 10.1006/jdeq.1993.1048.  Google Scholar

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes,, Amer. Natur., 142 (1993), 911.   Google Scholar

[25]

R. Lande, Genetics and demography in biological conservation,, Science, 241 (1988), 1455.   Google Scholar

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217.  doi: 10.1080/17442508008833146.  Google Scholar

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Discrete Contin. Dyn. Syst., 33 (2013), 2495.  doi: 10.3934/dcds.2013.33.2495.  Google Scholar

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model,, J. Math. Anal. Appl., 402 (2013), 392.  doi: 10.1016/j.jmaa.2012.11.043.  Google Scholar

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps,, Nonlinear Anal., 85 (2013), 204.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[30]

X. Mao, Stochastic Differential Equations and Applications,, Second edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[31]

X. Mao, Stationary distribution of stochastic population systems,, Systems Control Lett., 60 (2011), 398.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[32]

R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (1974).   Google Scholar

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices,, Linear Algebra and Appl., 18 (1977), 175.  doi: 10.1016/0024-3795(77)90073-8.  Google Scholar

[34]

G. Poole and T. Boullion, A Survey on M-Matrices,, SIAM Rev., 16 (1974), 419.  doi: 10.1137/1016079.  Google Scholar

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise,, Statist. Probab. Lett., 83 (2013), 655.  doi: 10.1016/j.spl.2012.11.003.  Google Scholar

show all references

References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory,, Second edition, (2000).   Google Scholar

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics,, Int. J. Pure Appl. Math., 11 (2004), 377.   Google Scholar

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601.  doi: 10.1016/j.na.2011.06.043.  Google Scholar

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise,, J. Math. Anal. Appl., 391 (2012), 363.  doi: 10.1016/j.jmaa.2012.02.043.  Google Scholar

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay,, J. Math. Anal. Appl., 210 (1997), 279.  doi: 10.1006/jmaa.1997.5403.  Google Scholar

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, SIAM, (1994).  doi: 10.1137/1.9781611971262.  Google Scholar

[7]

S. Cheng, Stochastic population systems,, Stoch. Anal. Appl., 27 (2009), 854.  doi: 10.1080/07362990902844348.  Google Scholar

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations,, J. Differential Equations, 115 (1995), 173.  doi: 10.1006/jdeq.1995.1011.  Google Scholar

[9]

T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357.  doi: 10.1007/BF02462011.  Google Scholar

[10]

T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411.  doi: 10.1016/0362-546X(86)90111-2.  Google Scholar

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations,, Academic Press, (1991).   Google Scholar

[12]

B. S. Goh, Stability in models of mutualism,, Amer. Natur., 113 (1979), 261.  doi: 10.1086/283384.  Google Scholar

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems,, J. Math. Biol., 19 (1984), 157.  doi: 10.1007/BF00277744.  Google Scholar

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics,, Kluwer Academic, (1992).  doi: 10.1007/978-94-015-7920-9.  Google Scholar

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations,, J. Math. Biol., 24 (1986), 327.  doi: 10.1007/BF00275641.  Google Scholar

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations,, Theoret. Population Biol., 14 (1978), 46.  doi: 10.1016/0040-5809(78)90003-5.  Google Scholar

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters,, Theoret. Population Biol., 19 (1981), 1.  doi: 10.1016/0040-5809(81)90032-0.  Google Scholar

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps,, J. Math. Biol., 36 (1997), 169.  doi: 10.1007/s002850050096.  Google Scholar

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism,, J. Math. Anal. Appl., 215 (1997), 154.  doi: 10.1006/jmaa.1997.5632.  Google Scholar

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation,, Discrete Contin. Dyn. Syst., 32 (2012), 867.  doi: 10.3934/dcds.2012.32.867.  Google Scholar

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations,, Kluwer Academic, (1992).  doi: 10.1007/978-94-015-8084-7.  Google Scholar

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993).   Google Scholar

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems,, J. Differential Equations, 103 (1993), 221.  doi: 10.1006/jdeq.1993.1048.  Google Scholar

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes,, Amer. Natur., 142 (1993), 911.   Google Scholar

[25]

R. Lande, Genetics and demography in biological conservation,, Science, 241 (1988), 1455.   Google Scholar

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217.  doi: 10.1080/17442508008833146.  Google Scholar

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations,, Discrete Contin. Dyn. Syst., 33 (2013), 2495.  doi: 10.3934/dcds.2013.33.2495.  Google Scholar

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model,, J. Math. Anal. Appl., 402 (2013), 392.  doi: 10.1016/j.jmaa.2012.11.043.  Google Scholar

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps,, Nonlinear Anal., 85 (2013), 204.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[30]

X. Mao, Stochastic Differential Equations and Applications,, Second edition, (2008).  doi: 10.1533/9780857099402.  Google Scholar

[31]

X. Mao, Stationary distribution of stochastic population systems,, Systems Control Lett., 60 (2011), 398.  doi: 10.1016/j.sysconle.2011.02.013.  Google Scholar

[32]

R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (1974).   Google Scholar

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices,, Linear Algebra and Appl., 18 (1977), 175.  doi: 10.1016/0024-3795(77)90073-8.  Google Scholar

[34]

G. Poole and T. Boullion, A Survey on M-Matrices,, SIAM Rev., 16 (1974), 419.  doi: 10.1137/1016079.  Google Scholar

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise,, Statist. Probab. Lett., 83 (2013), 655.  doi: 10.1016/j.spl.2012.11.003.  Google Scholar

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[8]

Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020032

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[11]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[12]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[19]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]