September  2015, 20(7): 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

2. 

School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China, China

Received  May 2014 Revised  February 2015 Published  July 2015

Using stochastic differential equations with Lévy jumps, this paper studies the effect of environmental stochasticity and random catastrophes on the permanence of Lotka-Volterra facultative systems. Under certain simple assumptions, we establish the sufficient conditions for weak permanence in the mean and extinction of the non-autonomous system, respectively. In particular, a necessary and sufficient condition for permanence and extinction of autonomous system with jump-diffusion are obtained. We generalize some former results under weaker assumptions. Finally, we discuss the biological implications of the main results.
Citation: Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069
References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory, Second edition, Harcourt/Academic Press, 2000.

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377-400.

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375. doi: 10.1016/j.jmaa.2012.02.043.

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291. doi: 10.1006/jmaa.1997.5403.

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994. doi: 10.1137/1.9781611971262.

[7]

S. Cheng, Stochastic population systems, Stoch. Anal. Appl., 27 (2009), 854-874. doi: 10.1080/07362990902844348.

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations, J. Differential Equations, 115 (1995), 173-192. doi: 10.1006/jdeq.1995.1011.

[9]

T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370. doi: 10.1007/BF02462011.

[10]

T. C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419. doi: 10.1016/0362-546X(86)90111-2.

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations, Academic Press, New York, 1991.

[12]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275. doi: 10.1086/283384.

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol., 19 (1984), 157-168. doi: 10.1007/BF00277744.

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339. doi: 10.1007/BF00275641.

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations, Theoret. Population Biol., 14 (1978), 46-61. doi: 10.1016/0040-5809(78)90003-5.

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters, Theoret. Population Biol., 19 (1981), 1-18. doi: 10.1016/0040-5809(81)90032-0.

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps, J. Math. Biol., 36 (1997), 169-187. doi: 10.1007/s002850050096.

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997), 154-173. doi: 10.1006/jmaa.1997.5632.

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889. doi: 10.3934/dcds.2012.32.867.

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic, Dordrecht, 1992. doi: 10.1007/978-94-015-8084-7.

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems, J. Differential Equations, 103 (1993), 221-246. doi: 10.1006/jdeq.1993.1048.

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Amer. Natur., 142 (1993), 911-927.

[25]

R. Lande, Genetics and demography in biological conservation, Science, 241 (1988), 1455-1460.

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228. doi: 10.1080/17442508008833146.

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete Contin. Dyn. Syst., 33 (2013), 2495-2522. doi: 10.3934/dcds.2013.33.2495.

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 402 (2013), 392-403. doi: 10.1016/j.jmaa.2012.11.043.

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213. doi: 10.1016/j.na.2013.02.018.

[30]

X. Mao, Stochastic Differential Equations and Applications, Second edition, Horwood Publishing, Chichester, 2008. doi: 10.1533/9780857099402.

[31]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405. doi: 10.1016/j.sysconle.2011.02.013.

[32]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1974.

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices, Linear Algebra and Appl., 18 (1977), 175-188. doi: 10.1016/0024-3795(77)90073-8.

[34]

G. Poole and T. Boullion, A Survey on M-Matrices, SIAM Rev., 16 (1974), 419-427. doi: 10.1137/1016079.

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise, Statist. Probab. Lett., 83 (2013), 655-664. doi: 10.1016/j.spl.2012.11.003.

show all references

References:
[1]

R. B. Ash and C. A. Doléans-Dade, Probability and Measure Theory, Second edition, Harcourt/Academic Press, 2000.

[2]

A. Bahar and X. Mao, Stochastic delay population dynamics, Int. J. Pure Appl. Math., 11 (2004), 377-400.

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375. doi: 10.1016/j.jmaa.2012.02.043.

[5]

H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291. doi: 10.1006/jmaa.1997.5403.

[6]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994. doi: 10.1137/1.9781611971262.

[7]

S. Cheng, Stochastic population systems, Stoch. Anal. Appl., 27 (2009), 854-874. doi: 10.1080/07362990902844348.

[8]

H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations, J. Differential Equations, 115 (1995), 173-192. doi: 10.1006/jdeq.1995.1011.

[9]

T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370. doi: 10.1007/BF02462011.

[10]

T. C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419. doi: 10.1016/0362-546X(86)90111-2.

[11]

M. Gilpin and I. Hanski, Metapopulation Dynamics: Empirical and Theoretical Investigations, Academic Press, New York, 1991.

[12]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275. doi: 10.1086/283384.

[13]

K. Gopalsamy, Global asymptotic stability in Volterra's population systems, J. Math. Biol., 19 (1984), 157-168. doi: 10.1007/BF00277744.

[14]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.

[15]

T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339. doi: 10.1007/BF00275641.

[16]

F. B. Hanson and H. C. Tuckwell, Persistence times of populations with large random fluctuations, Theoret. Population Biol., 14 (1978), 46-61. doi: 10.1016/0040-5809(78)90003-5.

[17]

F. B. Hanson and H. C. Tuckwell, Logistic growth with random density independent disasters, Theoret. Population Biol., 19 (1981), 1-18. doi: 10.1016/0040-5809(81)90032-0.

[18]

F. B. Hanson and H. C. Tuckwell, Population growth with randomly distributed jumps, J. Math. Biol., 36 (1997), 169-187. doi: 10.1007/s002850050096.

[19]

X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997), 154-173. doi: 10.1006/jmaa.1997.5632.

[20]

C. Ji and D. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889. doi: 10.3934/dcds.2012.32.867.

[21]

V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic, Dordrecht, 1992. doi: 10.1007/978-94-015-8084-7.

[22]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.

[23]

Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Valterra type systems, J. Differential Equations, 103 (1993), 221-246. doi: 10.1006/jdeq.1993.1048.

[24]

R. Lande, Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Amer. Natur., 142 (1993), 911-927.

[25]

R. Lande, Genetics and demography in biological conservation, Science, 241 (1988), 1455-1460.

[26]

R. Sh. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228. doi: 10.1080/17442508008833146.

[27]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete Contin. Dyn. Syst., 33 (2013), 2495-2522. doi: 10.3934/dcds.2013.33.2495.

[28]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 402 (2013), 392-403. doi: 10.1016/j.jmaa.2012.11.043.

[29]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213. doi: 10.1016/j.na.2013.02.018.

[30]

X. Mao, Stochastic Differential Equations and Applications, Second edition, Horwood Publishing, Chichester, 2008. doi: 10.1533/9780857099402.

[31]

X. Mao, Stationary distribution of stochastic population systems, Systems Control Lett., 60 (2011), 398-405. doi: 10.1016/j.sysconle.2011.02.013.

[32]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 1974.

[33]

R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices, Linear Algebra and Appl., 18 (1977), 175-188. doi: 10.1016/0024-3795(77)90073-8.

[34]

G. Poole and T. Boullion, A Survey on M-Matrices, SIAM Rev., 16 (1974), 419-427. doi: 10.1137/1016079.

[35]

J. Tong, Z. Zhang and J. Bao, The stationary distribution of the facultative population model with a degenerate noise, Statist. Probab. Lett., 83 (2013), 655-664. doi: 10.1016/j.spl.2012.11.003.

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371

[3]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[4]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[5]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[6]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[7]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[8]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[9]

Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021301

[10]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[11]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3811-3829. doi: 10.3934/dcdsb.2021207

[12]

Huijie Qiao, Jiang-lun Wu. Path independence of the additive functionals for stochastic differential equations driven by G-lévy processes. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022007

[13]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[14]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[15]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic and Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[16]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[17]

Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241

[18]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[19]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[20]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]