• Previous Article
    Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder
September  2015, 20(7): 2129-2155. doi: 10.3934/dcdsb.2015.20.2129

Competition for one nutrient with recycling and allelopathy in an unstirred chemostat

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China

2. 

Department of Natural Science in the Center for General Education, Chang Gung University, Kwei-Shan, Taoyuan 333

Received  August 2014 Revised  January 2015 Published  July 2015

In this paper, we study a PDE model of two species competing for a single limiting nutrient resource in a chemostat in which one microbial species excretes a toxin that increases the mortality of another. Our goal is to understand the role of spatial heterogeneity and allelopathy in blooms of harmful algae. We first demonstrate that the two-species system and its single species subsystem satisfy a mass conservation law that plays an important role in our analysis. We investigate the possibilities of bistability and coexistence for the two-species system by appealing to the method of topological degree in cones and the theory of uniform persistence. Numerical simulations confirm the theoretical results.
Citation: Hua Nie, Feng-Bin Wang. Competition for one nutrient with recycling and allelopathy in an unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2129-2155. doi: 10.3934/dcdsb.2015.20.2129
References:
[1]

F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications,, Addison-Wesley Longman, (1997).   Google Scholar

[2]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[3]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[4]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[5]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion, Part I, General existence results,, Nonlinear Anal., 24 (1995), 337.  doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[6]

Y. Du, Positive periodic solutions of a competitor-competitor-mutualist model,, Differential Integral Equations, 9 (1996), 1043.   Google Scholar

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997).  doi: 10.1007/978-1-4615-6397-6.  Google Scholar

[8]

J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: A theoretical exploration,, Journal of Plankton Research, 33 (2011), 211.  doi: 10.1093/plankt/fbq070.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).   Google Scholar

[10]

S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[11]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[12]

I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy,, Applied Mathematics and Computation, 215 (2009), 573.  doi: 10.1016/j.amc.2009.05.033.  Google Scholar

[13]

I. P. Martines, H. V. Kojouharov and J. P. Grover, Nutrient recycling and allelopathy in a gradostat,, Computers and Mathematics with Applications, 66 (2013), 1613.  doi: 10.1016/j.camwa.2013.02.005.  Google Scholar

[14]

R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[15]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[18]

H. H. Schaefer and M. P. Wolff, Topological Vector Spaces,, $2^{nd}$ edition, (1999).  doi: 10.1007/978-1-4612-1468-7.  Google Scholar

[19]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[20]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[21]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[22]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[23]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[24]

M. X. Wang, Nonlinear Parabolic Equations (in Chinese),, Science Press, (1993).   Google Scholar

[25]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM J. Math. Anal., 21 (1990), 327.  doi: 10.1137/0521018.  Google Scholar

[27]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications,, Addison-Wesley Longman, (1997).   Google Scholar

[2]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[3]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[4]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[5]

E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion, Part I, General existence results,, Nonlinear Anal., 24 (1995), 337.  doi: 10.1016/0362-546X(94)E0063-M.  Google Scholar

[6]

Y. Du, Positive periodic solutions of a competitor-competitor-mutualist model,, Differential Integral Equations, 9 (1996), 1043.   Google Scholar

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997).  doi: 10.1007/978-1-4615-6397-6.  Google Scholar

[8]

J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: A theoretical exploration,, Journal of Plankton Research, 33 (2011), 211.  doi: 10.1093/plankt/fbq070.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988).   Google Scholar

[10]

S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[11]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[12]

I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy,, Applied Mathematics and Computation, 215 (2009), 573.  doi: 10.1016/j.amc.2009.05.033.  Google Scholar

[13]

I. P. Martines, H. V. Kojouharov and J. P. Grover, Nutrient recycling and allelopathy in a gradostat,, Computers and Mathematics with Applications, 66 (2013), 1613.  doi: 10.1016/j.camwa.2013.02.005.  Google Scholar

[14]

R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[15]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,, Springer-Verlag, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[18]

H. H. Schaefer and M. P. Wolff, Topological Vector Spaces,, $2^{nd}$ edition, (1999).  doi: 10.1007/978-1-4612-1468-7.  Google Scholar

[19]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs 41, (1995).   Google Scholar

[20]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[21]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[22]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[23]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.  doi: 10.1007/BF00173267.  Google Scholar

[24]

M. X. Wang, Nonlinear Parabolic Equations (in Chinese),, Science Press, (1993).   Google Scholar

[25]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[26]

Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions,, SIAM J. Math. Anal., 21 (1990), 327.  doi: 10.1137/0521018.  Google Scholar

[27]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[2]

Feng-Bin Wang, Sze-Bi Hsu, Wendi Wang. Dynamics of harmful algae with seasonal temperature variations in the cove-main lake. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 313-335. doi: 10.3934/dcdsb.2016.21.313

[3]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[4]

Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621

[5]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[6]

Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066

[7]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[8]

Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128

[9]

W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35

[10]

Yu-Xia Wang, Wan-Tong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 19-39. doi: 10.3934/dcds.2019002

[11]

Yuan-Hang Su, Wan-Tong Li, Fei-Ying Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4929-4936. doi: 10.3934/dcdsb.2019038

[12]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[13]

Ihab Haidar, Alain Rapaport, Frédéric Gérard. Effects of spatial structure and diffusion on the performances of the chemostat. Mathematical Biosciences & Engineering, 2011, 8 (4) : 953-971. doi: 10.3934/mbe.2011.8.953

[14]

Hua Nie, Jianhua Wu. The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 303-329. doi: 10.3934/dcds.2012.32.303

[15]

Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1

[16]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[17]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[18]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[19]

Joydeb Bhattacharyya, Samares Pal. Macroalgal allelopathy in the emergence of coral diseases. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 741-762. doi: 10.3934/dcdsb.2017036

[20]

Hideo Ikeda, Masayasu Mimura, Tommaso Scotti. Shadow system approach to a plankton model generating harmful algal bloom. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 829-858. doi: 10.3934/dcds.2017034

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]