January  2015, 20(1): 215-230. doi: 10.3934/dcdsb.2015.20.215

Interaction of media and disease dynamics and its impact on emerging infection management

1. 

College of Transport & Communications, Shanghai Maritime University, Shanghai, 201306, China

2. 

Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, 200030, China

3. 

School of Administrative Studies, York University, Toronto, M3J 1P3, Canada

4. 

School of Mathematics, Shandong Normal University, Jiannan, 250014, China

5. 

Center for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada

Received  November 2012 Revised  January 2014 Published  November 2014

The 2002-2003 SARS outbreaks exhibited some distinct features such as rapid spatial spread, massive media reports, and fast self-control. These features were shared by the 2009 pandemic influenza and will be experienced by other emerging infectious diseases. We focus on the dynamic interaction of media reports, epidemic outbreak and behavior change in the population and formulate a compartmental model, that tracks the evolution of the human population. Such population is characterized by the disease progression (susceptible, infected, hospitalized, and recovered) and by the extent to which the media has impacted, so individuals have modified their behaviors to reduce their transmissibility and infectivity. The model also describes the dynamics of media reports by considering how media is influenced by the disease statistics (numbers of infected and hospitalized individuals, for example). We then conduct linear stability analysis and numerical simulations to study how interaction of media reports and disease progress affects the disease transmission dynamics, so as to shed light on what type of media will be the most effective for the control of an epidemic.
Citation: Qin Wang, Laijun Zhao, Rongbing Huang, Youping Yang, Jianhong Wu. Interaction of media and disease dynamics and its impact on emerging infection management. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 215-230. doi: 10.3934/dcdsb.2015.20.215
References:
[1]

J. Arino and C. C. McCluskey, Effect of a sharp change of the incidence function on the dynamics of a simple disease,, Journal of Biological Dynamics, 4 (2010), 490.  doi: 10.1080/17513751003793017.  Google Scholar

[2]

M. Arydah and R. Smith, Controlling malaria with indoor residual spraying in spatially heterogenous environments,, Mathematical Biosciences and Engineering, 8 (2011), 889.  doi: 10.3934/mbe.2011.8.889.  Google Scholar

[3]

F. B. Agusto and A. B. Gumel, Theoretical assessment of avian influenza vaccine,, Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 1.  doi: 10.3934/dcdsb.2010.13.1.  Google Scholar

[4]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology,, Journal of the Royal Society Interface, 4 (2007), 879.  doi: 10.1098/rsif.2007.1100.  Google Scholar

[5]

J. A. Cui, Y. H. Sun and H. P. Zhu, The impact of media on the control of infectious diseases,, Journal of Dynamics and Differential Equations, 20 (2007), 31.  doi: 10.1007/s10884-007-9075-0.  Google Scholar

[6]

J. A. Cui, X. Tao and H. P. Zhu, An sis infection mode incorporating media coverage,, The Rocky Mountain Journal of Mathematics, 38 (2008), 1323.  doi: 10.1216/RMJ-2008-38-5-1323.  Google Scholar

[7]

D. Drache and S. Feldman, Media Coverage of the 2003 Toronto SARS Outbreak,, Robarts Centre Research Paper, (2003), 1.   Google Scholar

[8]

N. Ferguson, Capturing human behaviour,, Nature, 446 (2007), 733.  doi: 10.1038/446733a.  Google Scholar

[9]

S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response,, Journal of Theoretical Biology, 264 (2010), 501.  doi: 10.1016/j.jtbi.2010.02.032.  Google Scholar

[10]

S. Funk, E. Gilad and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 6872.  doi: 10.1073/pnas.0810762106.  Google Scholar

[11]

A. B. Gumel, C. C. McCluskey and J. Watmough, An sveir model for assessing potential impact of an imperfect anti-SARS vaccine,, Mathematical Biosciences and Engineering, 3 (2006), 485.  doi: 10.3934/mbe.2006.3.485.  Google Scholar

[12]

D. Z. Gao and S. G. Ruan, An SIS patch model with variable transmission coefficients,, Mathematical Biosciences, 232 (2011), 110.  doi: 10.1016/j.mbs.2011.05.001.  Google Scholar

[13]

J. Gu, Z. M. Gao and W. Li, Modeling of epidemic spreading with white Gaussian noise,, Chinese Science Bull., 56 (2011), 3683.  doi: 10.1007/s11434-011-4753-z.  Google Scholar

[14]

Z. M. Gao, J. Gu and W. Li, Epidemic spreading in a multi-compartment system,, Chinese Physics Letter, 29 (2012).  doi: 10.1088/0256-307X/29/2/028902.  Google Scholar

[15]

J. H. Huang and X. F. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment,, Discrete and Continuous Dynamical Systems - Series B, 17 (2012), 2829.  doi: 10.3934/dcdsb.2012.17.2829.  Google Scholar

[16]

Z. X. Hu, W. B. Ma and S. G. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment,, Mathematical Biosciences, 238 (2012), 12.  doi: 10.1016/j.mbs.2012.03.010.  Google Scholar

[17]

J. H. Jones and M. Salathe, Early assessment of anxiety and behavioral response to novel swine-origin influenza A (H1N1),, Plos One, 4 (2009).  doi: 10.1371/journal.pone.0008032.  Google Scholar

[18]

W. Li, Z. M. Gao and J. Gu, Effects of variant rates and noise on epidemic spreading,, Chinese Physics Letter, 28 (2011).  doi: 10.1088/0256-307X/28/5/058903.  Google Scholar

[19]

Y. F. Li, C. Q. Ma and J. A. Cui, The effect of constant and mixed impulsive vaccination on sis epidemic models incorporating media coverage,, Rocky Mountain Journal of Mathematics, 38 (2008), 1437.  doi: 10.1216/RMJ-2008-38-5-1437.  Google Scholar

[20]

R. S. Liu, J. P. Shuai, J. Wu and H. P. Zhu, Modeling spatial spread of west nile virus and impact of directional dispersal of birds,, Mathematical Biosciences and Engineering, 3 (2006), 145.   Google Scholar

[21]

R. S. Liu, J. H. Wu and H. P. Zhu, Media/Psychological impact on multiple outbreaks of emerging infectious diseases,, Computational and Mathematical Methods in Medicine, 8 (2007), 153.  doi: 10.1080/17486700701425870.  Google Scholar

[22]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback,, Discrete and Continuous Dynamical Systems, 24 (2009), 1215.  doi: 10.3934/dcds.2009.24.1215.  Google Scholar

[23]

A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases,, Mathematical and Computer Modelling, 53 (2011), 1221.  doi: 10.1016/j.mcm.2010.12.005.  Google Scholar

[24]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 1173.  doi: 10.3934/dcdsb.2004.4.1173.  Google Scholar

[25]

M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model for quarantine and isolation,, Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 209.  doi: 10.3934/dcdsb.2010.14.209.  Google Scholar

[26]

M. Salathle and S. Khandelwal, Assessing vaccination sentiments with online social media: Implications for infectious disease dynamics and control,, PLoS Computational Biology, 7 (2011), 1.   Google Scholar

[27]

S. Samanta, S. Rana, A. Sharma, A. K. Misra and J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: A mathematical model,, Applied Mathematics and Computation, 219 (2013), 6965.  doi: 10.1016/j.amc.2013.01.009.  Google Scholar

[28]

C. J. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Mathematical Biosciences, 230 (2011), 87.  doi: 10.1016/j.mbs.2011.01.005.  Google Scholar

[29]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011).   Google Scholar

[30]

P. Van den Driessche and J. Watmough, Reproductive numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[31]

A. Wang and Y. N. Xiao, Filippov system describing media effects on the spread of infectious diseases,, Nonlinear Analysis: Hybrid Systems, 11 (2014), 84.  doi: 10.1016/j.nahs.2013.06.005.  Google Scholar

[32]

D. M. Xiao and S. G. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Mathematical Biosciences, 208 (2007), 419.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[33]

M. E. Young, G. R. Norman and K. R. Humphreys, Medicine in the popular press: The influence of the media on perceptions of disease,, PLoS One, 3 (2008).  doi: 10.1371/journal.pone.0003552.  Google Scholar

[34]

X. P. Yuan, Y. K. Xue and M. X. Liu, Analysis of an epidemic model with awareness programs by media on complex networks,, Chaos, 48 (2013), 1.  doi: 10.1016/j.chaos.2012.12.001.  Google Scholar

show all references

References:
[1]

J. Arino and C. C. McCluskey, Effect of a sharp change of the incidence function on the dynamics of a simple disease,, Journal of Biological Dynamics, 4 (2010), 490.  doi: 10.1080/17513751003793017.  Google Scholar

[2]

M. Arydah and R. Smith, Controlling malaria with indoor residual spraying in spatially heterogenous environments,, Mathematical Biosciences and Engineering, 8 (2011), 889.  doi: 10.3934/mbe.2011.8.889.  Google Scholar

[3]

F. B. Agusto and A. B. Gumel, Theoretical assessment of avian influenza vaccine,, Discrete and Continuous Dynamical Systems - Series B, 13 (2010), 1.  doi: 10.3934/dcdsb.2010.13.1.  Google Scholar

[4]

S. Bansal, B. T. Grenfell and L. A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology,, Journal of the Royal Society Interface, 4 (2007), 879.  doi: 10.1098/rsif.2007.1100.  Google Scholar

[5]

J. A. Cui, Y. H. Sun and H. P. Zhu, The impact of media on the control of infectious diseases,, Journal of Dynamics and Differential Equations, 20 (2007), 31.  doi: 10.1007/s10884-007-9075-0.  Google Scholar

[6]

J. A. Cui, X. Tao and H. P. Zhu, An sis infection mode incorporating media coverage,, The Rocky Mountain Journal of Mathematics, 38 (2008), 1323.  doi: 10.1216/RMJ-2008-38-5-1323.  Google Scholar

[7]

D. Drache and S. Feldman, Media Coverage of the 2003 Toronto SARS Outbreak,, Robarts Centre Research Paper, (2003), 1.   Google Scholar

[8]

N. Ferguson, Capturing human behaviour,, Nature, 446 (2007), 733.  doi: 10.1038/446733a.  Google Scholar

[9]

S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response,, Journal of Theoretical Biology, 264 (2010), 501.  doi: 10.1016/j.jtbi.2010.02.032.  Google Scholar

[10]

S. Funk, E. Gilad and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 6872.  doi: 10.1073/pnas.0810762106.  Google Scholar

[11]

A. B. Gumel, C. C. McCluskey and J. Watmough, An sveir model for assessing potential impact of an imperfect anti-SARS vaccine,, Mathematical Biosciences and Engineering, 3 (2006), 485.  doi: 10.3934/mbe.2006.3.485.  Google Scholar

[12]

D. Z. Gao and S. G. Ruan, An SIS patch model with variable transmission coefficients,, Mathematical Biosciences, 232 (2011), 110.  doi: 10.1016/j.mbs.2011.05.001.  Google Scholar

[13]

J. Gu, Z. M. Gao and W. Li, Modeling of epidemic spreading with white Gaussian noise,, Chinese Science Bull., 56 (2011), 3683.  doi: 10.1007/s11434-011-4753-z.  Google Scholar

[14]

Z. M. Gao, J. Gu and W. Li, Epidemic spreading in a multi-compartment system,, Chinese Physics Letter, 29 (2012).  doi: 10.1088/0256-307X/29/2/028902.  Google Scholar

[15]

J. H. Huang and X. F. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment,, Discrete and Continuous Dynamical Systems - Series B, 17 (2012), 2829.  doi: 10.3934/dcdsb.2012.17.2829.  Google Scholar

[16]

Z. X. Hu, W. B. Ma and S. G. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment,, Mathematical Biosciences, 238 (2012), 12.  doi: 10.1016/j.mbs.2012.03.010.  Google Scholar

[17]

J. H. Jones and M. Salathe, Early assessment of anxiety and behavioral response to novel swine-origin influenza A (H1N1),, Plos One, 4 (2009).  doi: 10.1371/journal.pone.0008032.  Google Scholar

[18]

W. Li, Z. M. Gao and J. Gu, Effects of variant rates and noise on epidemic spreading,, Chinese Physics Letter, 28 (2011).  doi: 10.1088/0256-307X/28/5/058903.  Google Scholar

[19]

Y. F. Li, C. Q. Ma and J. A. Cui, The effect of constant and mixed impulsive vaccination on sis epidemic models incorporating media coverage,, Rocky Mountain Journal of Mathematics, 38 (2008), 1437.  doi: 10.1216/RMJ-2008-38-5-1437.  Google Scholar

[20]

R. S. Liu, J. P. Shuai, J. Wu and H. P. Zhu, Modeling spatial spread of west nile virus and impact of directional dispersal of birds,, Mathematical Biosciences and Engineering, 3 (2006), 145.   Google Scholar

[21]

R. S. Liu, J. H. Wu and H. P. Zhu, Media/Psychological impact on multiple outbreaks of emerging infectious diseases,, Computational and Mathematical Methods in Medicine, 8 (2007), 153.  doi: 10.1080/17486700701425870.  Google Scholar

[22]

E. Liz and G. Rost, On the global attractor of delay differential equations with unimodal feedback,, Discrete and Continuous Dynamical Systems, 24 (2009), 1215.  doi: 10.3934/dcds.2009.24.1215.  Google Scholar

[23]

A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases,, Mathematical and Computer Modelling, 53 (2011), 1221.  doi: 10.1016/j.mcm.2010.12.005.  Google Scholar

[24]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 1173.  doi: 10.3934/dcdsb.2004.4.1173.  Google Scholar

[25]

M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model for quarantine and isolation,, Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 209.  doi: 10.3934/dcdsb.2010.14.209.  Google Scholar

[26]

M. Salathle and S. Khandelwal, Assessing vaccination sentiments with online social media: Implications for infectious disease dynamics and control,, PLoS Computational Biology, 7 (2011), 1.   Google Scholar

[27]

S. Samanta, S. Rana, A. Sharma, A. K. Misra and J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: A mathematical model,, Applied Mathematics and Computation, 219 (2013), 6965.  doi: 10.1016/j.amc.2013.01.009.  Google Scholar

[28]

C. J. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Mathematical Biosciences, 230 (2011), 87.  doi: 10.1016/j.mbs.2011.01.005.  Google Scholar

[29]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011).   Google Scholar

[30]

P. Van den Driessche and J. Watmough, Reproductive numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[31]

A. Wang and Y. N. Xiao, Filippov system describing media effects on the spread of infectious diseases,, Nonlinear Analysis: Hybrid Systems, 11 (2014), 84.  doi: 10.1016/j.nahs.2013.06.005.  Google Scholar

[32]

D. M. Xiao and S. G. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Mathematical Biosciences, 208 (2007), 419.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[33]

M. E. Young, G. R. Norman and K. R. Humphreys, Medicine in the popular press: The influence of the media on perceptions of disease,, PLoS One, 3 (2008).  doi: 10.1371/journal.pone.0003552.  Google Scholar

[34]

X. P. Yuan, Y. K. Xue and M. X. Liu, Analysis of an epidemic model with awareness programs by media on complex networks,, Chaos, 48 (2013), 1.  doi: 10.1016/j.chaos.2012.12.001.  Google Scholar

[1]

Xuejuan Lu, Shaokai Wang, Shengqiang Liu, Jia Li. An SEI infection model incorporating media impact. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1317-1335. doi: 10.3934/mbe.2017068

[2]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[3]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[4]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[5]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[6]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[7]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[8]

Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065

[9]

Tomás Caraballo, Mohamed El Fatini, Roger Pettersson, Regragui Taki. A stochastic SIRI epidemic model with relapse and media coverage. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3483-3501. doi: 10.3934/dcdsb.2018250

[10]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[11]

Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97

[12]

Cameron Browne, Glenn F. Webb. A nosocomial epidemic model with infection of patients due to contaminated rooms. Mathematical Biosciences & Engineering, 2015, 12 (4) : 761-787. doi: 10.3934/mbe.2015.12.761

[13]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[14]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019202

[15]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[16]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[17]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[18]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[19]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[20]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (5)

[Back to Top]