-
Previous Article
The modeling error of well treatment for unsteady flow in porous media
- DCDS-B Home
- This Issue
-
Next Article
Competition for one nutrient with recycling and allelopathy in an unstirred chemostat
Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion
1. | Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui, China, China |
2. | Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui,, China |
References:
[1] |
X. Bai and Y. Lin, On the existence and uniqunenss of solutions to the stochastic differential equations driven by $G$-Brownian motion with integral lipschitz codfficients, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 589-610.
doi: 10.1007/s10255-014-0405-9. |
[2] |
Z. Chen, Strong laws of large number for capacities,, preprint, ().
|
[3] |
L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.
doi: 10.1007/s11118-010-9185-x. |
[4] |
W. Fei and C. Fei, Optimal stochastic control and optimal consumption and portfolio with $G$-Brownian motion,, preprint, ().
|
[5] |
W. Fei and C. Fei, Exponential stability for stochastic differential equations disturbed by $G$-Brownian motion,, preprint, ().
|
[6] |
F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.
doi: 10.1016/j.spa.2009.05.010. |
[7] |
M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009) 539-546.
doi: 10.1007/s10255-008-8831-1. |
[8] |
L. Hu, Y. Ren and T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231-237.
doi: 10.1016/j.amc.2013.12.111. |
[9] |
V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
doi: 10.1142/0906. |
[10] |
X. Li and S. Peng, Stopping times and related Itô's calcilus with $G$-Brownian motion, Stochastic Process. Appl., 121 (2011), 1492-1508.
doi: 10.1016/j.spa.2011.03.009. |
[11] |
Y. Lin, Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions, Electronic. J. Probbab., 18 (2013), 23pp.
doi: 10.1214/EJP.v18-2566. |
[12] |
X. Liu, Impulsive stabilization of nonlinear systems, IMA J. Math. Control Inform., 10 (1993), 11-19.
doi: 10.1093/imamci/10.1.11. |
[13] |
B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Automat. Control, 53 (2008), 2128-2133.
doi: 10.1109/TAC.2008.930185. |
[14] |
S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, in Stochastic Analysis and Applications, Abel Symp., 2, Springer, Berlin, 2007, 541-567.
doi: 10.1007/978-3-540-70847-6_25. |
[15] |
S. Peng, $G$-Brownian motion and dynamic risk measures under volatility uncertainty,, preprint, ().
|
[16] |
S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.
doi: 10.1016/j.spa.2007.10.015. |
[17] |
S. Peng, Nonlinear expectations and stochastic calculus under uncertainty,, preprint, ().
|
[18] |
S. Peng and B. Jia, Some criteria on $p$-th moment stability of impulsive stochastic functional differential equations, Statist. Probab. Lett., 80 (2010), 1085-1092.
doi: 10.1016/j.spl.2010.03.002. |
[19] |
Y. Ren, Q. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion, Math. Methods Appl. Sci., 36 (2013), 1746-1759.
doi: 10.1002/mma.2720. |
[20] |
Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion, Statist. Probab. Lett., 81 (2011), 580-585.
doi: 10.1016/j.spl.2011.01.010. |
[21] |
L. Shen and J. Sun, $p$-th moment exponential stability of stochastic differential equations with impulsive effect, Sci. China Inf. Sci., 54 (2011), 1702-1711.
doi: 10.1007/s11432-011-4250-7. |
[22] |
S. Wu, D. Han and X. Meng, $p$-moment stability of stochastic differential equations with jumps, Appl. Math. Comput., 152 (2004), 505-519.
doi: 10.1016/S0096-3003(03)00573-3. |
[23] |
H. Wu and J. Sun, $p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica J. IFAC, 42 (2006), 1753-1759.
doi: 10.1016/j.automatica.2006.05.009. |
[24] |
X. Wu, L. Yan, W. Zhang and L. Chen, Exponential stability of impulsive stochastic delay differential systems, Discrete Dyn. Nat. Soc., (2012), Art. ID 296136, 15pp.
doi: 10.1155/2012/296136. |
[25] |
D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906-1910.
doi: 10.1016/j.aml.2012.02.063. |
[26] |
B. Zhang, J. Xu and D. Kannan, Extension and application of Itô's formula under $G$-framework, Stochastic Anal. Appl., 28 (2010), 322-349.
doi: 10.1080/07362990903546595. |
show all references
References:
[1] |
X. Bai and Y. Lin, On the existence and uniqunenss of solutions to the stochastic differential equations driven by $G$-Brownian motion with integral lipschitz codfficients, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 589-610.
doi: 10.1007/s10255-014-0405-9. |
[2] |
Z. Chen, Strong laws of large number for capacities,, preprint, ().
|
[3] |
L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.
doi: 10.1007/s11118-010-9185-x. |
[4] |
W. Fei and C. Fei, Optimal stochastic control and optimal consumption and portfolio with $G$-Brownian motion,, preprint, ().
|
[5] |
W. Fei and C. Fei, Exponential stability for stochastic differential equations disturbed by $G$-Brownian motion,, preprint, ().
|
[6] |
F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.
doi: 10.1016/j.spa.2009.05.010. |
[7] |
M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009) 539-546.
doi: 10.1007/s10255-008-8831-1. |
[8] |
L. Hu, Y. Ren and T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231-237.
doi: 10.1016/j.amc.2013.12.111. |
[9] |
V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
doi: 10.1142/0906. |
[10] |
X. Li and S. Peng, Stopping times and related Itô's calcilus with $G$-Brownian motion, Stochastic Process. Appl., 121 (2011), 1492-1508.
doi: 10.1016/j.spa.2011.03.009. |
[11] |
Y. Lin, Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions, Electronic. J. Probbab., 18 (2013), 23pp.
doi: 10.1214/EJP.v18-2566. |
[12] |
X. Liu, Impulsive stabilization of nonlinear systems, IMA J. Math. Control Inform., 10 (1993), 11-19.
doi: 10.1093/imamci/10.1.11. |
[13] |
B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Automat. Control, 53 (2008), 2128-2133.
doi: 10.1109/TAC.2008.930185. |
[14] |
S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, in Stochastic Analysis and Applications, Abel Symp., 2, Springer, Berlin, 2007, 541-567.
doi: 10.1007/978-3-540-70847-6_25. |
[15] |
S. Peng, $G$-Brownian motion and dynamic risk measures under volatility uncertainty,, preprint, ().
|
[16] |
S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.
doi: 10.1016/j.spa.2007.10.015. |
[17] |
S. Peng, Nonlinear expectations and stochastic calculus under uncertainty,, preprint, ().
|
[18] |
S. Peng and B. Jia, Some criteria on $p$-th moment stability of impulsive stochastic functional differential equations, Statist. Probab. Lett., 80 (2010), 1085-1092.
doi: 10.1016/j.spl.2010.03.002. |
[19] |
Y. Ren, Q. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion, Math. Methods Appl. Sci., 36 (2013), 1746-1759.
doi: 10.1002/mma.2720. |
[20] |
Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion, Statist. Probab. Lett., 81 (2011), 580-585.
doi: 10.1016/j.spl.2011.01.010. |
[21] |
L. Shen and J. Sun, $p$-th moment exponential stability of stochastic differential equations with impulsive effect, Sci. China Inf. Sci., 54 (2011), 1702-1711.
doi: 10.1007/s11432-011-4250-7. |
[22] |
S. Wu, D. Han and X. Meng, $p$-moment stability of stochastic differential equations with jumps, Appl. Math. Comput., 152 (2004), 505-519.
doi: 10.1016/S0096-3003(03)00573-3. |
[23] |
H. Wu and J. Sun, $p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica J. IFAC, 42 (2006), 1753-1759.
doi: 10.1016/j.automatica.2006.05.009. |
[24] |
X. Wu, L. Yan, W. Zhang and L. Chen, Exponential stability of impulsive stochastic delay differential systems, Discrete Dyn. Nat. Soc., (2012), Art. ID 296136, 15pp.
doi: 10.1155/2012/296136. |
[25] |
D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906-1910.
doi: 10.1016/j.aml.2012.02.063. |
[26] |
B. Zhang, J. Xu and D. Kannan, Extension and application of Itô's formula under $G$-framework, Stochastic Anal. Appl., 28 (2010), 322-349.
doi: 10.1080/07362990903546595. |
[1] |
Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $ G $-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110 |
[2] |
Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325 |
[3] |
Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248 |
[4] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[5] |
Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 |
[6] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[7] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
[8] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[9] |
Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157 |
[10] |
Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 |
[11] |
Zhengyan Lin, Li-Xin Zhang. Convergence to a self-normalized G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 4-. doi: 10.1186/s41546-017-0013-8 |
[12] |
Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023 |
[13] |
Fuke Wu, George Yin, Le Yi Wang. Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching. Mathematical Control and Related Fields, 2015, 5 (3) : 697-719. doi: 10.3934/mcrf.2015.5.697 |
[14] |
Wensheng Yin, Jinde Cao. Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4493-4513. doi: 10.3934/dcdsb.2020109 |
[15] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[16] |
Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251 |
[17] |
Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021040 |
[18] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 |
[19] |
Francesca Biagini, Thilo Meyer-Brandis, Bernt Øksendal, Krzysztof Paczka. Optimal control with delayed information flow of systems driven by G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 8-. doi: 10.1186/s41546-018-0033-z |
[20] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]