September  2015, 20(7): 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion

1. 

Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui, China, China

2. 

Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui,, China

Received  August 2014 Revised  March 2015 Published  July 2015

In this paper, we establish the $p$-th moment exponential stability and quasi sure exponential stability of the solutions to impulsive stochastic differential equations driven by $G$-Brownian motion (IGSDEs in short) by means of $G$-Lyapunov function method. An example is presented to illustrate the efficiency of the obtained results.
Citation: Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157
References:
[1]

X. Bai and Y. Lin, On the existence and uniqunenss of solutions to the stochastic differential equations driven by $G$-Brownian motion with integral lipschitz codfficients,, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 589.  doi: 10.1007/s10255-014-0405-9.  Google Scholar

[2]

Z. Chen, Strong laws of large number for capacities,, preprint, ().   Google Scholar

[3]

L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes,, Potential Anal., 34 (2011), 139.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[4]

W. Fei and C. Fei, Optimal stochastic control and optimal consumption and portfolio with $G$-Brownian motion,, preprint, ().   Google Scholar

[5]

W. Fei and C. Fei, Exponential stability for stochastic differential equations disturbed by $G$-Brownian motion,, preprint, ().   Google Scholar

[6]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion,, Stochastic Process. Appl., 119 (2009), 3356.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[7]

M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion,, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539.  doi: 10.1007/s10255-008-8831-1.  Google Scholar

[8]

L. Hu, Y. Ren and T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion,, Appl. Math. Comput., 230 (2014), 231.  doi: 10.1016/j.amc.2013.12.111.  Google Scholar

[9]

V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations,, World Scientific, (1989).  doi: 10.1142/0906.  Google Scholar

[10]

X. Li and S. Peng, Stopping times and related Itô's calcilus with $G$-Brownian motion,, Stochastic Process. Appl., 121 (2011), 1492.  doi: 10.1016/j.spa.2011.03.009.  Google Scholar

[11]

Y. Lin, Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions,, Electronic. J. Probbab., 18 (2013).  doi: 10.1214/EJP.v18-2566.  Google Scholar

[12]

X. Liu, Impulsive stabilization of nonlinear systems,, IMA J. Math. Control Inform., 10 (1993), 11.  doi: 10.1093/imamci/10.1.11.  Google Scholar

[13]

B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach,, IEEE Trans. Automat. Control, 53 (2008), 2128.  doi: 10.1109/TAC.2008.930185.  Google Scholar

[14]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type,, in Stochastic Analysis and Applications, (2007), 541.  doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[15]

S. Peng, $G$-Brownian motion and dynamic risk measures under volatility uncertainty,, preprint, ().   Google Scholar

[16]

S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation,, Stochastic Process. Appl., 118 (2008), 2223.  doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[17]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty,, preprint, ().   Google Scholar

[18]

S. Peng and B. Jia, Some criteria on $p$-th moment stability of impulsive stochastic functional differential equations,, Statist. Probab. Lett., 80 (2010), 1085.  doi: 10.1016/j.spl.2010.03.002.  Google Scholar

[19]

Y. Ren, Q. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion,, Math. Methods Appl. Sci., 36 (2013), 1746.  doi: 10.1002/mma.2720.  Google Scholar

[20]

Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion,, Statist. Probab. Lett., 81 (2011), 580.  doi: 10.1016/j.spl.2011.01.010.  Google Scholar

[21]

L. Shen and J. Sun, $p$-th moment exponential stability of stochastic differential equations with impulsive effect,, Sci. China Inf. Sci., 54 (2011), 1702.  doi: 10.1007/s11432-011-4250-7.  Google Scholar

[22]

S. Wu, D. Han and X. Meng, $p$-moment stability of stochastic differential equations with jumps,, Appl. Math. Comput., 152 (2004), 505.  doi: 10.1016/S0096-3003(03)00573-3.  Google Scholar

[23]

H. Wu and J. Sun, $p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching,, Automatica J. IFAC, 42 (2006), 1753.  doi: 10.1016/j.automatica.2006.05.009.  Google Scholar

[24]

X. Wu, L. Yan, W. Zhang and L. Chen, Exponential stability of impulsive stochastic delay differential systems,, Discrete Dyn. Nat. Soc., (2012).  doi: 10.1155/2012/296136.  Google Scholar

[25]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion,, Appl. Math. Lett., 25 (2012), 1906.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[26]

B. Zhang, J. Xu and D. Kannan, Extension and application of Itô's formula under $G$-framework,, Stochastic Anal. Appl., 28 (2010), 322.  doi: 10.1080/07362990903546595.  Google Scholar

show all references

References:
[1]

X. Bai and Y. Lin, On the existence and uniqunenss of solutions to the stochastic differential equations driven by $G$-Brownian motion with integral lipschitz codfficients,, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 589.  doi: 10.1007/s10255-014-0405-9.  Google Scholar

[2]

Z. Chen, Strong laws of large number for capacities,, preprint, ().   Google Scholar

[3]

L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes,, Potential Anal., 34 (2011), 139.  doi: 10.1007/s11118-010-9185-x.  Google Scholar

[4]

W. Fei and C. Fei, Optimal stochastic control and optimal consumption and portfolio with $G$-Brownian motion,, preprint, ().   Google Scholar

[5]

W. Fei and C. Fei, Exponential stability for stochastic differential equations disturbed by $G$-Brownian motion,, preprint, ().   Google Scholar

[6]

F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion,, Stochastic Process. Appl., 119 (2009), 3356.  doi: 10.1016/j.spa.2009.05.010.  Google Scholar

[7]

M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion,, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539.  doi: 10.1007/s10255-008-8831-1.  Google Scholar

[8]

L. Hu, Y. Ren and T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion,, Appl. Math. Comput., 230 (2014), 231.  doi: 10.1016/j.amc.2013.12.111.  Google Scholar

[9]

V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations,, World Scientific, (1989).  doi: 10.1142/0906.  Google Scholar

[10]

X. Li and S. Peng, Stopping times and related Itô's calcilus with $G$-Brownian motion,, Stochastic Process. Appl., 121 (2011), 1492.  doi: 10.1016/j.spa.2011.03.009.  Google Scholar

[11]

Y. Lin, Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions,, Electronic. J. Probbab., 18 (2013).  doi: 10.1214/EJP.v18-2566.  Google Scholar

[12]

X. Liu, Impulsive stabilization of nonlinear systems,, IMA J. Math. Control Inform., 10 (1993), 11.  doi: 10.1093/imamci/10.1.11.  Google Scholar

[13]

B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach,, IEEE Trans. Automat. Control, 53 (2008), 2128.  doi: 10.1109/TAC.2008.930185.  Google Scholar

[14]

S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type,, in Stochastic Analysis and Applications, (2007), 541.  doi: 10.1007/978-3-540-70847-6_25.  Google Scholar

[15]

S. Peng, $G$-Brownian motion and dynamic risk measures under volatility uncertainty,, preprint, ().   Google Scholar

[16]

S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation,, Stochastic Process. Appl., 118 (2008), 2223.  doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[17]

S. Peng, Nonlinear expectations and stochastic calculus under uncertainty,, preprint, ().   Google Scholar

[18]

S. Peng and B. Jia, Some criteria on $p$-th moment stability of impulsive stochastic functional differential equations,, Statist. Probab. Lett., 80 (2010), 1085.  doi: 10.1016/j.spl.2010.03.002.  Google Scholar

[19]

Y. Ren, Q. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion,, Math. Methods Appl. Sci., 36 (2013), 1746.  doi: 10.1002/mma.2720.  Google Scholar

[20]

Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion,, Statist. Probab. Lett., 81 (2011), 580.  doi: 10.1016/j.spl.2011.01.010.  Google Scholar

[21]

L. Shen and J. Sun, $p$-th moment exponential stability of stochastic differential equations with impulsive effect,, Sci. China Inf. Sci., 54 (2011), 1702.  doi: 10.1007/s11432-011-4250-7.  Google Scholar

[22]

S. Wu, D. Han and X. Meng, $p$-moment stability of stochastic differential equations with jumps,, Appl. Math. Comput., 152 (2004), 505.  doi: 10.1016/S0096-3003(03)00573-3.  Google Scholar

[23]

H. Wu and J. Sun, $p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching,, Automatica J. IFAC, 42 (2006), 1753.  doi: 10.1016/j.automatica.2006.05.009.  Google Scholar

[24]

X. Wu, L. Yan, W. Zhang and L. Chen, Exponential stability of impulsive stochastic delay differential systems,, Discrete Dyn. Nat. Soc., (2012).  doi: 10.1155/2012/296136.  Google Scholar

[25]

D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion,, Appl. Math. Lett., 25 (2012), 1906.  doi: 10.1016/j.aml.2012.02.063.  Google Scholar

[26]

B. Zhang, J. Xu and D. Kannan, Extension and application of Itô's formula under $G$-framework,, Stochastic Anal. Appl., 28 (2010), 322.  doi: 10.1080/07362990903546595.  Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[11]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[15]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]