September  2015, 20(7): 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

The modeling error of well treatment for unsteady flow in porous media

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, China

Received  August 2014 Revised  November 2014 Published  July 2015

In petroleum engineering, the well is usually treated as a point or line source, since its radius is much smaller than the scale of the whole reservoir. In this paper, we consider the modeling error of this treatment for unsteady flow in porous media.
Citation: Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171
References:
[1]

L. O. Aleksandrovna, S. V. Alekseevich and U. N. Nikolaevna, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society, (1968). Google Scholar

[2]

D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour les équations paraboliques,, J. Math. Pures Appl., 61 (1982), 113. Google Scholar

[3]

D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour des équations paraboliques (II),, Acta Math. Sci., 2 (1982), 85. Google Scholar

[4]

R. A. Alessandra, Hölder regularity results for solutions of parabolic equations,, in Variational Analysis and Applications, (2005), 921. doi: 10.1007/0-387-24276-7_53. Google Scholar

[5]

L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations I,, Journal of Fudan University, (1976), 61. Google Scholar

[6]

L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations II,, Journal of Fudan University, (1976), 136. Google Scholar

[7]

L. P. K. Daniel and E. Lars, Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization,, SIAM J. Numer. Anal., 34 (1997), 1432. doi: 10.1137/S003614299528081X. Google Scholar

[8]

L. P. K. Daniel, A survey of regularization methods for first-kind Volterra equations,, in Surveys on Solution Methods for Inverse Problems, (2000), 53. Google Scholar

[9]

A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations,, $2^{nd}$ edition, (2008). doi: 10.1201/9781420010558. Google Scholar

[10]

P. H. Valvatne, J. Serve, L. J. Durlofsky and K. Aziza, Efficient modeling of nonconventional wells with downhole inflow control devices,, Journal of Petroleum Science and Engineering, 39 (2003), 99. doi: 10.1016/S0920-4105(03)00042-1. Google Scholar

[11]

S. Weixi, On mixed initial-boundary value problmes of second order parabolic equations with equivalued surface boundary conditions,, Journal of Fudan University, (1978), 15. Google Scholar

[12]

C. Zhangxin, H. Guanren and M. Yuanle, Computational Science and Engineering,, Society for Industrial and Applied Mathematics, (2006). Google Scholar

[13]

C. Zhiming and Y. Xingye, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media,, Multiscale Model. Simul., 1 (2003), 260. doi: 10.1137/S1540345902413322. Google Scholar

show all references

References:
[1]

L. O. Aleksandrovna, S. V. Alekseevich and U. N. Nikolaevna, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society, (1968). Google Scholar

[2]

D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour les équations paraboliques,, J. Math. Pures Appl., 61 (1982), 113. Google Scholar

[3]

D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour des équations paraboliques (II),, Acta Math. Sci., 2 (1982), 85. Google Scholar

[4]

R. A. Alessandra, Hölder regularity results for solutions of parabolic equations,, in Variational Analysis and Applications, (2005), 921. doi: 10.1007/0-387-24276-7_53. Google Scholar

[5]

L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations I,, Journal of Fudan University, (1976), 61. Google Scholar

[6]

L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations II,, Journal of Fudan University, (1976), 136. Google Scholar

[7]

L. P. K. Daniel and E. Lars, Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization,, SIAM J. Numer. Anal., 34 (1997), 1432. doi: 10.1137/S003614299528081X. Google Scholar

[8]

L. P. K. Daniel, A survey of regularization methods for first-kind Volterra equations,, in Surveys on Solution Methods for Inverse Problems, (2000), 53. Google Scholar

[9]

A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations,, $2^{nd}$ edition, (2008). doi: 10.1201/9781420010558. Google Scholar

[10]

P. H. Valvatne, J. Serve, L. J. Durlofsky and K. Aziza, Efficient modeling of nonconventional wells with downhole inflow control devices,, Journal of Petroleum Science and Engineering, 39 (2003), 99. doi: 10.1016/S0920-4105(03)00042-1. Google Scholar

[11]

S. Weixi, On mixed initial-boundary value problmes of second order parabolic equations with equivalued surface boundary conditions,, Journal of Fudan University, (1978), 15. Google Scholar

[12]

C. Zhangxin, H. Guanren and M. Yuanle, Computational Science and Engineering,, Society for Industrial and Applied Mathematics, (2006). Google Scholar

[13]

C. Zhiming and Y. Xingye, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media,, Multiscale Model. Simul., 1 (2003), 260. doi: 10.1137/S1540345902413322. Google Scholar

[1]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[2]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[3]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[4]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[5]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[6]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[7]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[8]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[9]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[10]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[11]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[12]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[13]

Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647

[14]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[15]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks & Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[16]

Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks & Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601

[17]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[18]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[19]

Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631

[20]

Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]