\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The modeling error of well treatment for unsteady flow in porous media

Abstract Related Papers Cited by
  • In petroleum engineering, the well is usually treated as a point or line source, since its radius is much smaller than the scale of the whole reservoir. In this paper, we consider the modeling error of this treatment for unsteady flow in porous media.
    Mathematics Subject Classification: Primary: 35B40, 35K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. O. Aleksandrovna, S. V. Alekseevich and U. N. Nikolaevna, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R.I., 1968.

    [2]

    D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour les équations paraboliques, J. Math. Pures Appl., 61 (1982), 113-130.

    [3]

    D. Alain and L. Ta-Tsien, Comportement limite des solutions de certains problèmes mixtes pour des équations paraboliques (II), Acta Math. Sci., 2 (1982), 85-104.

    [4]

    R. A. Alessandra, Hölder regularity results for solutions of parabolic equations, in Variational Analysis and Applications, Nonconvex Optim. Appl., 79, Springer, New York, 2005, 921-934.doi: 10.1007/0-387-24276-7_53.

    [5]

    L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations I, Journal of Fudan University, (1976), 61-71.

    [6]

    L. Daqian, Z. Songmu, T. Yongji, S. Hanji, G. Ruxi and S. Weixi, Boundary value problmes with equivalued surface boundary conditions for self-adjoint elliptic differential equations II, Journal of Fudan University, (1976), 136-145.

    [7]

    L. P. K. Daniel and E. Lars, Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization, SIAM J. Numer. Anal., 34 (1997), 1432-1450.doi: 10.1137/S003614299528081X.

    [8]

    L. P. K. Daniel, A survey of regularization methods for first-kind Volterra equations, in Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, 53-82.

    [9]

    A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, $2^{nd}$ edition, Chapman & Hall/CRC, Boca Raton, FL, 2008.doi: 10.1201/9781420010558.

    [10]

    P. H. Valvatne, J. Serve, L. J. Durlofsky and K. Aziza, Efficient modeling of nonconventional wells with downhole inflow control devices, Journal of Petroleum Science and Engineering, 39 (2003), 99-116.doi: 10.1016/S0920-4105(03)00042-1.

    [11]

    S. Weixi, On mixed initial-boundary value problmes of second order parabolic equations with equivalued surface boundary conditions, Journal of Fudan University, (1978), 15-24.

    [12]

    C. Zhangxin, H. Guanren and M. Yuanle, Computational Science and Engineering, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006.

    [13]

    C. Zhiming and Y. Xingye, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media, Multiscale Model. Simul., 1 (2003), 260-303.doi: 10.1137/S1540345902413322.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return