January  2015, 20(1): 23-38. doi: 10.3934/dcdsb.2015.20.23

An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence

1. 

Department of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Avenue, Tehran 1561836314, Iran, Iran

2. 

Institut für Mathematik, Universität Mannheim, A5, 6, D-63181 Mannheim, Germany

Received  June 2013 Revised  June 2014 Published  November 2014

In this note, we establish under mild smoothness assumptions the pathwise convergence rate of an Euler-type method with projection for delay stochastic differential equations on unbounded domains.
Citation: Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23
References:
[1]

J. A. D. Appleby and A. Rodkina, Asymptotic stability of polynomial stochastic delay differential equations with damped perturbations,, Funct. Differ. Equ., 12 (2005), 35.   Google Scholar

[2]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

V. I. Bogachev, Measure Theory. Vol I,, Springer, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[4]

I. Gyöngy, A note on Euler's approximations,, Potential Anal., 8 (1998), 205.  doi: 10.1023/A:1008605221617.  Google Scholar

[5]

I. Gyöngy and S. Sabanis, A note on Euler approximations for stochastic differential equations with delay,, Appl. Math. Optim., 68 (2013), 391.  doi: 10.1007/s00245-013-9211-7.  Google Scholar

[6]

D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations,, SIAM J. Numer. Anal., 40 (2002), 1041.  doi: 10.1137/S0036142901389530.  Google Scholar

[7]

M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients,, to appear in Mem. Amer. Math. Soc., ().   Google Scholar

[8]

A. Jentzen, Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients,, Potential. Anal., 31 (2009), 375.  doi: 10.1007/s11118-009-9139-3.  Google Scholar

[9]

A. Jentzen, P. E. Kloeden and A. Neuenkirch, Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients,, Numer. Math., 112 (2009), 41.  doi: 10.1007/s00211-008-0200-8.  Google Scholar

[10]

P. E. Kloeden, G. Lord, A. Neuenkirch and T. Shardlow, The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds,, J. Comput. Appl. Math., 235 (2011), 1245.  doi: 10.1016/j.cam.2010.08.011.  Google Scholar

[11]

P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations,, LMS J. Comput. Math., 10 (2007), 235.  doi: 10.1112/S1461157000001388.  Google Scholar

[12]

X. Mao, Stochastic Differential Equations and their Applications,, Horwood Publishing, (1997).   Google Scholar

[13]

X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition,, J. Comput. Appl. Math., 151 (2003), 215.  doi: 10.1016/S0377-0427(02)00750-1.  Google Scholar

[14]

X. Mao, C. Yuan and J. Zou, Stochastic differential delay equations of population dynamics,, J. Math. Anal. Appl., 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[15]

F. Wu and S. Hu, A study of a class of nonlinear stochastic delay differential equations,, Stoch. Dyn., 10 (2010), 97.  doi: 10.1142/S0219493710002875.  Google Scholar

show all references

References:
[1]

J. A. D. Appleby and A. Rodkina, Asymptotic stability of polynomial stochastic delay differential equations with damped perturbations,, Funct. Differ. Equ., 12 (2005), 35.   Google Scholar

[2]

L. Arnold, Random Dynamical Systems,, Springer, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

V. I. Bogachev, Measure Theory. Vol I,, Springer, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[4]

I. Gyöngy, A note on Euler's approximations,, Potential Anal., 8 (1998), 205.  doi: 10.1023/A:1008605221617.  Google Scholar

[5]

I. Gyöngy and S. Sabanis, A note on Euler approximations for stochastic differential equations with delay,, Appl. Math. Optim., 68 (2013), 391.  doi: 10.1007/s00245-013-9211-7.  Google Scholar

[6]

D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations,, SIAM J. Numer. Anal., 40 (2002), 1041.  doi: 10.1137/S0036142901389530.  Google Scholar

[7]

M. Hutzenthaler and A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients,, to appear in Mem. Amer. Math. Soc., ().   Google Scholar

[8]

A. Jentzen, Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients,, Potential. Anal., 31 (2009), 375.  doi: 10.1007/s11118-009-9139-3.  Google Scholar

[9]

A. Jentzen, P. E. Kloeden and A. Neuenkirch, Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients,, Numer. Math., 112 (2009), 41.  doi: 10.1007/s00211-008-0200-8.  Google Scholar

[10]

P. E. Kloeden, G. Lord, A. Neuenkirch and T. Shardlow, The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds,, J. Comput. Appl. Math., 235 (2011), 1245.  doi: 10.1016/j.cam.2010.08.011.  Google Scholar

[11]

P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations,, LMS J. Comput. Math., 10 (2007), 235.  doi: 10.1112/S1461157000001388.  Google Scholar

[12]

X. Mao, Stochastic Differential Equations and their Applications,, Horwood Publishing, (1997).   Google Scholar

[13]

X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition,, J. Comput. Appl. Math., 151 (2003), 215.  doi: 10.1016/S0377-0427(02)00750-1.  Google Scholar

[14]

X. Mao, C. Yuan and J. Zou, Stochastic differential delay equations of population dynamics,, J. Math. Anal. Appl., 304 (2005), 296.  doi: 10.1016/j.jmaa.2004.09.027.  Google Scholar

[15]

F. Wu and S. Hu, A study of a class of nonlinear stochastic delay differential equations,, Stoch. Dyn., 10 (2010), 97.  doi: 10.1142/S0219493710002875.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[16]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[20]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

[Back to Top]