January  2015, 20(1): 231-248. doi: 10.3934/dcdsb.2015.20.231

The stability of bifurcating steady states of several classes of chemotaxis systems

1. 

Department of Basic Courses, Beijing Union University, Beijing 100101

Received  October 2013 Revised  July 2014 Published  November 2014

This paper concerns with the stability of bifurcating steady states obtained in [13] of several chemotaxis systems. By spectral analysis and the principle of the linearized stability, we prove that the bifurcating steady states are stable when the parameters satisfy some certain conditions.
Citation: Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231
References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinetic and Related Models, 5 (2012), 51.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch.Rational Mech.Anal, 52 (1973), 161.   Google Scholar

[5]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[6]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103.   Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51.   Google Scholar

[8]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

X. Lai, X. Chen, C. Qin and Y. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model,, preprint., ().   Google Scholar

[10]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models,, J. of Dynamics and Diff. Eqs., 17 (2005), 293.  doi: 10.1007/s10884-005-2938-3.  Google Scholar

[11]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. Amer. Math. Soc., 292 (1985), 531.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[12]

B. Sleeman, M. Ward and J. Wei, The existence, stability, and dynamics of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790.  doi: 10.1137/S0036139902415117.  Google Scholar

[13]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem,, J. Math. Biol., 66 (2013), 1241.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

show all references

References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[2]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux,, Kinetic and Related Models, 5 (2012), 51.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch.Rational Mech.Anal, 52 (1973), 161.   Google Scholar

[5]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[6]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences I,, Jahresber. DMV, 105 (2003), 103.   Google Scholar

[7]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences II,, Jahresber. DMV, 106 (2004), 51.   Google Scholar

[8]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[9]

X. Lai, X. Chen, C. Qin and Y. Zhang, Existence, uniqueness, and stability of bubble solutions of a chemotaxis model,, preprint., ().   Google Scholar

[10]

A. B. Potapov and T. Hillen, Metastability in chemotaxis models,, J. of Dynamics and Diff. Eqs., 17 (2005), 293.  doi: 10.1007/s10884-005-2938-3.  Google Scholar

[11]

R. Schaaf, Stationary solutions of chemotaxis systems,, Trans. Amer. Math. Soc., 292 (1985), 531.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[12]

B. Sleeman, M. Ward and J. Wei, The existence, stability, and dynamics of spike patterns in a chemotaxis model,, SIAM J. Appl. Math., 65 (2005), 790.  doi: 10.1137/S0036139902415117.  Google Scholar

[13]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem,, J. Math. Biol., 66 (2013), 1241.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[1]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[2]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[3]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[4]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[5]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[8]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[9]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[10]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[11]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[13]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[17]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]