Citation: |
[1] |
W. Adams and P. Loustaunau, An Introduction to Groebner Bases, American Mathematical Society, 1994. |
[2] |
F. Alizadeh, J. Haeberly and M. Overton, Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results, SIAM Journal of Optimization, 8 (1998), 746-768.doi: 10.1137/S1052623496304700. |
[3] |
E. Artin, Über die zerlegung definiter funktionen in quadra, Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.doi: 10.1007/BF02952513. |
[4] |
M. Ben Sassi and A. Girard, Computation of polytopic invariants for polynomial dynamical systems using linear programming, Automatica, 48 (2012), 3114-3121.doi: 10.1016/j.automatica.2012.08.014. |
[5] |
M. A. B. Sassi, R. Testylier, T. Dang and A. Girard, Reachability analysis of polynomial systems using linear programming relaxations, Springer: Automated Technology for Verification and Analysis, (2012), 137-151.doi: 10.1007/978-3-642-33386-6_12. |
[6] |
S. Bernstein, Sur la repr sentation des polynomes positif, Soobshch. Har'k. Mat. Obshch., 2 (1915), 227-228. |
[7] |
G. Blekherman, P. Parrilo and R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optimization, {SIAM}, Philadelphia, 2013.doi: 10.1137/1.9781611972290. |
[8] |
P. Bliman, An existence result for polynomial solutions of parameter-dependent LMIs, Systems and Control Letters, 51 (2004), 165-169.doi: 10.1016/j.sysconle.2003.08.001. |
[9] |
P. Bliman, R. Oliveira, V. Montagner and P. Peres, Existence of Homogeneous Polynomial Solutions for Parameter-Dependent Linear Matrix Inequalities with Parameters in the Simplex, IEEE Conference on Decision and Controls, (2006), 1486-1491.doi: 10.1109/CDC.2006.377429. |
[10] |
P. Bliman, A convex approach to robust stability for linear systems with uncertain scalar parameters, SIAM journal on Control and Optimization, 42 (2004), 2016-2042.doi: 10.1137/S0363012901398691. |
[11] |
L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and Real Computation, Springer-Verlag, New York, 1998. |
[12] |
F. Boudaoud, F. Caruso and M Roy, Certificates of Positivity in the Bernstein Basis, Discrete and Computational Geometry, 39 (2008), 639-655.doi: 10.1007/s00454-007-9042-x. |
[13] |
C. Brown, QEPCAD B: A program for computing with semi-algebraic sets using CADs, ACM SIGSAM Bulletin, 37 (2003), 97-108.doi: 10.1145/968708.968710. |
[14] |
M. Castle, V. Powers and B. Reznick, Polya's theorem with zeros, Journal of Symbolic Computation, 46 (2011), 1039-1048.doi: 10.1016/j.jsc.2011.05.006. |
[15] |
Y. Chang and B. Wah, Polynomial programming using groebner bases, IEEE Computer Software and Applications Conference, 3 (1994), 236-241.doi: 10.1109/CMPSAC.1994.342798. |
[16] |
G. Chesi, Establishing stability and instability of matrix hypercubes, System and Control Letters, 54 (2005), 381-388.doi: 10.1016/j.sysconle.2004.08.016. |
[17] |
G. Chesi, A. Garulli, A. Tesi and A. Vicino, Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach, IEEE Transactions on Automatic Control, 50 (2005), 365-370.doi: 10.1109/TAC.2005.843848. |
[18] |
G. Chesi, A. Garulli, A. Tesi and A. Vicino, LMI-based computation of optimal quadratic Lyapunov functions for odd polynomial systems, International Journal of Robust and Nonlinear Control, 15 (2005), 35-49.doi: 10.1002/rnc.967. |
[19] |
G. Collins and H. Hoon, Partial cylindrical algebraic decomposition for quantifier elimination, Journal of Symbolic Computation, 12 (1991), 299-328.doi: 10.1016/S0747-7171(08)80152-6. |
[20] |
J. de Loera and F. Santos, An effective version of Polya's theorem on positive definite forms, Journal of Pure and Applied Algebra, 108 (1996), 231-240.doi: 10.1016/0022-4049(95)00042-9. |
[21] |
C. Delzell, Impossibility of extending Polya's theorem to forms with arbitrary real exponents, Journal of Pure and Applied Algebra, 212 (2008), 2612-2622.doi: 10.1016/j.jpaa.2008.04.006. |
[22] |
P. Dickinson and J. Pohv, On an extension of Polya's Positivstellensatz, Journal of Global Optimization, 61 (2015), 515-625.doi: 10.1007/s10898-014-0196-9. |
[23] |
A. Dolzmann and T. Sturm, Redlog: Computer algebra meets computer logic, ACM SIGSAM Bulletin, 31 (1997), 2-9.doi: 10.1145/261320.261324. |
[24] |
P. Gahinet, P. Apkarian and M. Chilali, Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control, 41 (1996), 436-442doi: 10.1109/9.486646. |
[25] |
P. Gahinet, P. Apkarian, A linear matrix inequality approach to H infinity control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.doi: 10.1002/rnc.4590040403. |
[26] |
P. Giesl and S. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems, Journal of Mathematical Analysis and Applications, 410 (2014), 292-306.doi: 10.1016/j.jmaa.2013.08.014. |
[27] |
P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitary dimensions, Discrete and Continuous Dynamical Systems, 32 (2012), 3539-3565.doi: 10.3934/dcds.2012.32.3539. |
[28] |
W. Habicht, Uber die Zerlegung strikte definiter Formen in Quadrate, Commentarii Mathematici Helvetici, 12 (1939), 317-322.doi: 10.1007/BF01620655. |
[29] |
D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific Journal of Mathematics, 132 (1988), 35-62.doi: 10.2140/pjm.1988.132.35. |
[30] |
G. Hardy, J. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1934. |
[31] |
C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, An interior-point method for semidefinite programming, SIAM Journal of Optimization, 6 (1996), 342-361.doi: 10.1137/0806020. |
[32] |
D. Hilbert, Uber die Darstellung definiter Formen als Summe von Formen quadratens, Math. Ann., 32 (1888), 342-350.doi: 10.1007/BF01443605. |
[33] |
D. Hilbert, Uber ternare definite Formen, Acta Math., 17 (1893), 169-197.doi: 10.1007/BF02391990. |
[34] |
R. Kamyar, M. Peet and Y. Peet, Solving large-scale robust stability problems by exploiting the parallel structure of Polya's theorem, IEEE Transactions on Automatic Control, 58 (2013), 1931-1947.doi: 10.1109/TAC.2013.2253253. |
[35] |
R. Kamyar and M. Peet, Decentralized computation for robust stability of large-scale systems with parameters on the hypercube, in IEEE 51st Conference on Decision and Control, IEEE, 2012, 6259-6264.doi: 10.1109/CDC.2012.6425907. |
[36] |
R. Kamyar and M. Peet, Decentralized polya's algorithm for stability analysis of large-scale nonlinear systems, in IEEE Conference on Decision and Control, IEEE, 2013, 5858-5863.doi: 10.1109/CDC.2013.6760813. |
[37] |
R. Kamyar, C. Murti and M. Peet, Constructing piecewise-polynomial Lyapunov functions on convex polytopes using Handelman's basis, in IEEE Conference on Decision and Controls, IEEE, 2014.doi: 10.1109/CDC.2014.7040246. |
[38] |
R. Kamyar and M. Peet, Decentralized computation for robust stability analysis of large state-space systems using Polya's theorem, in American Control Conference (ACC), 2012, IEEE, 2012, 5948-5954.doi: 10.1109/ACC.2012.6315268. |
[39] |
H. Khalil, Nonlinear Systems, Third edition, Prentice Hall, New Jersey, 2002. |
[40] |
J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM Journal on Optimization, 11 (2001), 796-817.doi: 10.1137/S1052623400366802. |
[41] |
M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algebraic Geometry, Vol. 11, Springer, New York, 2009, 157-270.doi: 10.1007/978-0-387-09686-5_7. |
[42] |
R. Leroy, Convergence under subdivision and complexity of polynomial minimization in the simplicial bernstein basis, Reliable Computing, 17 (2012), 11-21. |
[43] |
R. Monteiro, Primal-dual path-following algorithms for semidefinite programming, SIAM Journal of Optimization, 7 (1997), 663-678.doi: 10.1137/S1052623495293056. |
[44] |
T. S. Motzkin, The arithmetic-geometric inequality, in Inequalities: Proceedings of Symposium Wright-Patterson Air Force Base, Ohio, 1967, 205-224. |
[45] |
R. Oliveira, P. Bliman and P. Peres, Robust LMIs with parameters in multi-simplex: Existence of solutions and applications, in IEEE 47th Conference on Decision and Control, IEEE, 2008, 2226-2231.doi: 10.1109/CDC.2008.4739192. |
[46] |
R. Oliveira and P. Peres, Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations, IEEE Transactions on Automatic Control, 52 (2007), 1334-1340.doi: 10.1109/TAC.2007.900848. |
[47] |
R. Oliveira, P. Peres, Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions, Linear Algebra and its Applications, 405 (2005), 209-228.doi: 10.1016/j.laa.2005.03.019. |
[48] |
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler and P. A. Parrilo, SOSTOOLS: Sum of squares optimization toolbox for MATLAB, preprint, arXiv:1310.4716, 2013. |
[49] |
A. Papachristodoulou, M. Peet and S. Lall, Analysis of polynomial systems with time delays via the sum of squares decomposition, IEEE Transactions on Automatic Control, 54 (2009), 1058-1064.doi: 10.1109/TAC.2009.2017168. |
[50] |
P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D thesis, California Institute of Technology, 2000. |
[51] |
M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound, IEEE Transactions on Automatic Control, 57 (2012), 2281-2293.doi: 10.1109/TAC.2012.2190163. |
[52] |
M. Peet, A. Papachristodoulou and S. Lall, Positive forms and stability of linear time-delay systems, SIAM Journal on Control and Optimization, 47 (2009), 3237-3258. |
[53] |
M. Peet and Y. Peet, A parallel-computing solution for optimization of polynomials, American Control Conference, (2010), 4851-4856.doi: 10.1109/ACC.2010.5530905. |
[54] |
V. Powers and B. Reznick, A Quantitative Polya's Theorem with Corner Zeros, ACM International Symposium on Symbolic and Algebraic Computation, 2006. |
[55] |
V. Powers and B. Reznick, Polynomials that are positive on an interval, Transactions of the American Mathematical Society, 352 (2000), 4677-4692.doi: 10.1090/S0002-9947-00-02595-2. |
[56] |
V. Powers and B. Reznick, A new bound for Polya's Theorem with applications to polynomials positive on polyhedra, Journal of Pure and Applied Algebra, 164 (2001), 221-229.doi: 10.1016/S0022-4049(00)00155-9. |
[57] |
A. Prestel and C. Delzell, Positive Polynomials: From Hilbert's 17th Problem to Real Algebra, Springer, New York, 2004. |
[58] |
M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal, 42 (1993), 969-984.doi: 10.1512/iumj.1993.42.42045. |
[59] |
D. Ramos and P. Peres, An LMI Condition for the Robust Stability of Uncertain Continuous-Time Linear Systems, IEEE Transactions on Automatic Control, 47 (2002), 675-678.doi: 10.1109/9.995048. |
[60] |
L. Ramshaw, A Connect-the-dots Approach to Splines, Digital Systems Research Center, 1987. |
[61] |
B. Reznick, Some concrete aspects of Hilbert's 17th problem, Contemporary Mathematics, 253 (2000), 251-272. |
[62] |
B. Reznick, Uniform denominators in Hilbert's seventeenth problem, Mathematische Zeitschrift, 220 (1995), 75-97.doi: 10.1007/BF02572604. |
[63] |
B. Reznick, On the absence of uniform denominators in Hilbert's 17th problem, Proceedings of the American Mathematical Society, 133 (2005), 2829-2834.doi: 10.1090/S0002-9939-05-07879-2. |
[64] |
S. Sankaranarayanan, X. Chen and E. Ábrahám, Lyapunov Function Synthesis using Handelman Representations, The 9th IFAC Symposium on Nonlinear Control Systems, 2013.doi: 10.3182/20130904-3-FR-2041.00198. |
[65] |
C. Scheiderer, Positivity and sums of squares: A guide to recent results, in Emerging Applications of Algebraic Geometry, Springer, New York, 2009, 271-324.doi: 10.1007/978-0-387-09686-5_8. |
[66] |
K. Schmudgen, The K-moment problem for compact semi-algebraic sets, Mathematische Annalen, 289 (1991), 203-206.doi: 10.1007/BF01446568. |
[67] |
M. Schweighofer, Certificates for nonnegativity of polynomials with zeros on compact semialgebraic sets, Manuscripta Mathematica, 117 (2005), 407-428.doi: 10.1007/s00229-005-0568-z. |
[68] |
H. Sherali and W. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems, SIAM Journal on Discrete Mathematics, 3 (1990), 411-430.doi: 10.1137/0403036. |
[69] |
H. Sherali and L. Liberti, Reformulation-linearization technique for global optimization, in Encyclopedia of Optimization, Springer, USA, 2009, 3263-3268.doi: 10.1007/978-0-387-74759-0_559. |
[70] |
H. Sherali and C. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique, Journal of Global Optimization, 2 (1992), 101-112.doi: 10.1007/BF00121304. |
[71] |
H. Sherali and C. Tuncbilek, New reformulation- linearization technique based relaxations for univariate and multivariate polynomial programming problems, Operations Research Letters, 21 (1997), 1-9.doi: 10.1016/S0167-6377(97)00013-8. |
[72] |
G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Mathematische Annalen, 207 (1974), 87-97.doi: 10.1007/BF01362149. |
[73] |
J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11 (1999), 625-653.doi: 10.1080/10556789908805766. |
[74] |
A. Tarski, A decision method for elementary algebra and geometry, inQuantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, 1998, 24-84.doi: 10.1007/978-3-7091-9459-1_3. |
[75] |
R. Tutuncu, K. Toh and M. Todd, Solving semidefinite-quadratic-linear programs using SDPT3, Mathematical Programming, Mathematical Programming Series B, 95 (2003), 189-217.doi: 10.1007/s10107-002-0347-5. |
[76] |
M. Yamashita, et al., A High-Performance Software Package for Semidefinite Programs: SDPA 7, Tech. rep. B-460, Dep. of Mathematical and Computing Sciences, Tokyo Inst. of Tech., 2010. |