Advanced Search
Article Contents
Article Contents

Computation of local ISS Lyapunov functions with low gains via linear programming

Abstract Related Papers Cited by
  • In this paper, we present a numerical algorithm for computing ISS Lyapunov functions for continuous-time systems which are input-to-state stable (ISS) on compact subsets of the state space. The algorithm relies on a linear programming problem and computes a continuous piecewise affine ISS Lyapunov function on a simplicial grid covering the given compact set excluding a small neighborhood of the origin. The objective of the linear programming problem is to minimize the gain. We show that for every ISS system with a locally Lipschitz right-hand side our algorithm is in principle able to deliver an ISS Lyapunov function. For $C^2$ right-hand sides a more efficient algorithm is proposed.
    Mathematics Subject Classification: Primary: 37B25, 93D09, 93D30; Secondary: 34D20, 90C05.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Abu Hassan and C. Storey, Numerical determination of domains of attraction for electrical power systems using the method of Zubov, Internat. J. Control, 34 (1981), 371-381.doi: 10.1080/00207178108922536.


    R. Baier, L. Grüne and S. F. Hafstein, Linear programming based Lyapunov function computation for differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 33-56.doi: 10.3934/dcdsb.2012.17.33.


    F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction, in Nonlinear Control in the Year 2000, Volume 1 (eds. A. Isidori, F. Lamnabhi-Lagarrigue and W. Respondek), Lecture Notes in Control and Inform. Sci., 258, NCN, Springer-Verlag, London, 2000, 277-289.doi: 10.1007/BFb0110220.


    F. Camilli, L. Grüne and F. Wirth, Domains of attraction of interconnected systems: A Zubov method approach, in Proc. European Control Conference (ECC 2009), Budapest, Hungary, 2009, 91-96.


    F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, Berlin, 1998.


    S. Dashkovskiy, B. Rüffer and F. Wirth, A small-gain type stability criterion for large scale networks of ISS systems, in Proc. of 44th IEEE Conference on Decision and Control and European Control Conference (ECC 2005), 2005, 5633-5638.doi: 10.1109/CDC.2005.1583060.


    S. Dashkovskiy, B. Rüffer and F. Wirth, An ISS Lyapunov function for networks of ISS systems, in Proc. 17th Int. Symp. Math. Theory of Networks and Systems (MTNS 2006), Kyoto, Japan, 2006, 77-82.


    S. Dashkovskiy, B. Rüffer and F. Wirth, An ISS small-gain theorem for general networks, Math. Control Signals Systems, 19 (2007), 93-122.doi: 10.1007/s00498-007-0014-8.


    S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), 4089-4118.doi: 10.1137/090746483.


    P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions, Discrete Contin. Dyn. Syst., 32 (2012), 3539-3565.doi: 10.3934/dcds.2012.32.3539.


    L. Grüne and M. Sigurani, Numerical ISS controller design via a dynamic game approach, in Proc. of the 52nd IEEE Conference on Decision and Control (CDC 2013), 2013, 1732-1737.


    S. F. Hafstein, A constructive converse Lyapunov theorem on exponential stability, Discrete Contin. Dyn. Syst., 10 (2004), 657-678.doi: 10.3934/dcds.2004.10.657.


    S. F. Hafstein, A constructive converse Lyapunov theorem on asymptotic stability for nonlinear autonomous ordinary differential equations, Dyn. Syst., 20 (2005), 281-299.doi: 10.1080/14689360500164873.


    S. F. Hafstein, An Algorithm for Constructing Lyapunov Functions, vol. 8 of Electron. J. Differ. Equ. Monogr., Texas State University-San Marcos, Department of Mathematics, San Marcos, TX, 2007. Available from: http://ejde.math.txstate.edu.


    S. Huang, M. R. James, D. Nešić and P. M. Dower, A unified approach to controller design for achieving ISS and related properties, IEEE Trans. Automat. Control, 50 (2005), 1681-1697.doi: 10.1109/TAC.2005.858691.


    Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.doi: 10.1016/0005-1098(96)00051-9.


    H. Li and F. Wirth, Zubov's method for interconnected systems - a dissipative formulation, in Proc. 20th Int. Symp. Math. Theory of Networks and Systems (MTNS 2012), Melbourne, Australia, 2012, Paper No. 184, 8 pages.


    S. F. Marinósson, Lyapunov function construction for ordinary differential equations with linear programming, Dyn. Syst., 17 (2002), 137-150.doi: 10.1080/0268111011011847.


    A. N. Michel, N. R. Sarabudla and R. K. Miller, Stability analysis of complex dynamical systems: Some computational methods, Circuits Systems Signal Process., 1 (1982), 171-202.doi: 10.1007/BF01600051.


    E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.doi: 10.1109/9.28018.


    E. D. Sontag, Some connections between stabilization and factorization, in Proc. of the 28th IEEE Conference on Decision and Control (CDC 1989), Vol. 1-3 (Tampa, FL, 1989), IEEE, New York, 1989, 990-995.


    E. D. Sontag, Further facts about input to state stabilization, IEEE Trans. Automat. Control, 35 (1990), 473-476.doi: 10.1109/9.52307.


    E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), 351-359.doi: 10.1016/0167-6911(94)00050-6.


    E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41 (1996), 1283-1294.doi: 10.1109/9.536498.

  • 加载中

Article Metrics

HTML views() PDF downloads(155) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint