Citation: |
[1] |
J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc., 337 (1993), 495-548.doi: 10.1090/S0002-9947-1993-1107025-2. |
[2] |
M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc., 43 (1991), 107-118.doi: 10.1112/jlms/s2-43.1.107. |
[3] |
M. Denker and M. Urbański, Geometric measures for parabolic rational maps, Ergodic. Theory Dynam. Systems, 12 (1992), 53-66.doi: 10.1017/S014338570000657X. |
[4] |
M. Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Studies, {46}, Amsterdam, New York, 1981.doi: 10.2307/2152750. |
[5] |
J. Kotus and M. Urbański, Conformal, geometric and invariant measures for transcendental expanding functions, Math. Ann., 324 (2002), 619-656.doi: 10.1007/s00208-002-0356-y. |
[6] |
J. Kotus and M. Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions, in Transcendental Dynamics and Complex Anaysis, London Math. Soc. Lecture Note Ser., {348}, Cambridge Univ. Press, Combridge, 2008, 251-316.doi: 10.1017/CBO9780511735233.013. |
[7] |
B. O. Stratmann and M. Urbański, The geometry of conformal measures for parabolic rational maps, Math. Proc. Cambridge Phil. Soc., 128 (2000), 141-156.doi: 10.1017/S0305004199003837. |
[8] |
M. Urbański and A. Zdunik, The parabolic map $1/e e^z$, Indag. Math. (N.S.), 15 (2004), 419-433.doi: 10.1016/S0019-3577(04)80009-0. |
[9] |
J. William, Multifractal Analysis of Parabolic Rational Maps, PHD thesis, 1998. |
[10] |
J. H. Zheng, Parabolic meromorphic functions, Pacific Journal of Mathematics, 250 (2011), 487-509.doi: 10.2140/pjm.2011.250.487. |
[11] |
J. H. Zheng, Conformal and invariant measures of parabolic meromorphic functions, Houston J. Math., 39 (2013), 1149-1159. |