Citation: |
[1] |
D. Angeli and A. Astolfi, A tight small-gain theorem for not necessarily ISS systems, Systems Control Lett., 56 (2007), 87-91.doi: 10.1016/j.sysconle.2006.08.003. |
[2] |
D. Angeli, E. D. Sontag and Y. Wang, A characterization of integral input-to-state stability, IEEE Trans. Autom. Control, 45 (2000), 1082-1097.doi: 10.1109/9.863594. |
[3] |
A. Bacciotti, F. Ceragioli and L. Mazzi, Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions, Set-Valued Analysis, 8 (2000), 299-309.doi: 10.1023/A:1008763931789. |
[4] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. |
[5] |
N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York, 1970. |
[6] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, 1998. |
[7] |
G. Como, E. Lovisari and K. Savla, Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing, IEEE Trans. Contr. Network Systems, 2 (2014), 57-67.doi: 10.1109/TCNS.2014.2367361. |
[8] |
S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), 4089-4118.doi: 10.1137/090746483. |
[9] |
P. De Leenheer, D. Angeli and E. D. Sontag, Monotone chemical reaction networks, Journal of Mathematical Chemistry, 41 (2007), 295-314.doi: 10.1007/s10910-006-9075-z. |
[10] |
D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness, Springer, Berlin, 2005.doi: 10.1007/b137541. |
[11] |
M. W. Hirsch and H. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, II, Elsevier B. V., Amsterdam, 2005, 239-357. |
[12] |
M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal., 13 (1982), 167-179.doi: 10.1137/0513013. |
[13] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423-439.doi: 10.1137/0516030. |
[14] |
M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity, 1 (1988), 51-71.doi: 10.1088/0951-7715/1/1/003. |
[15] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative. V. Convergence in $3$-dimensional systems, J. Diff. Eqns., 80 (1989), 94-106.doi: 10.1016/0022-0396(89)90097-1. |
[16] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative. IV. Structural stability in three-dimensional systems, SIAM J. Math. Anal., 21 (1990), 1225-1234.doi: 10.1137/0521067. |
[17] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative. VI. A local $C^r$ closing lemma for 3-dimensional systems, Ergodic Theory Dynam. Systems, 11 (1991), 443-454.doi: 10.1017/S014338570000626X. |
[18] |
M. W. Hirsch and H. L. Smith, Competitive and cooperative systems: Mini-review, in Positive systems (Rome, 2003), Lecture Notes in Control and Inform. Sci., 294, Springer, Berlin, 2003, 183-190.doi: 10.1007/978-3-540-44928-7_25. |
[19] |
H. Ito, A Lyapunov approach to cascade interconnection of integral input-to-state stable systems, IEEE Trans. Autom. Control, 55 (2010), 702-708.doi: 10.1109/TAC.2009.2037457. |
[20] |
H. Ito and Z.-P. Jiang, Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov perspective, IEEE Trans. Autom. Control, 54 (2009), 2389-2404.doi: 10.1109/TAC.2009.2028980. |
[21] |
H. Ito, State-dependent scaling problems and stability of interconnected iISS and ISS systems, IEEE Trans. Autom. Control, 51 (2006), 1626-1643.doi: 10.1109/TAC.2006.882930. |
[22] |
H. Ito, S. Dashkovskiy and F. Wirth, Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems, Automatica J. IFAC, 48 (2012), 1197-1204.doi: 10.1016/j.automatica.2012.03.018. |
[23] |
H. Ito, Z.-P. Jiang, S. Dashkovskiy and B. S. Rüffer, Robust stability of networks of iISS systems: Construction of sum-type Lyapunov functions, IEEE Trans. Autom. Control, 58 (2013), 1192-1207.doi: 10.1109/TAC.2012.2231552. |
[24] |
H. Ito, B. S. Rüffer and A. Rantzer, Max- and sum-separable Lyapunov functions for monotone systems and their level sets, in Proc. 53rd IEEE Conf. Decis. Control, 2014, 2371-2377.doi: 10.1109/CDC.2014.7039750. |
[25] |
Z.-P. Jiang, I. M. Y. Mareels and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.doi: 10.1016/0005-1098(96)00051-9. |
[26] |
H. K. Khalil, Nonlinear systems, 3rd edition, Prentice-Hall, Upper Saddle River, NJ, USA, 2002. |
[27] |
V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications, Vol. I: Ordinary Differential Equations, Academic Press, New York, 1969. |
[28] |
M. Margaliot and T. Tuller, Stability analysis of the ribosome flow model, IEEE/ACM Trans. Comp. Biology & Bioinformatics, 9 (2012), 1545-1552.doi: 10.1109/TCBB.2012.88. |
[29] |
A. Rantzer, Distributed control of positive systems, in Proc. 50th IEEE Conf. Decis. Control and Europ. Contr. Conf., Orlando, FL, USA, 2011, 6608-6611.doi: 10.1109/CDC.2011.6161293. |
[30] |
A. Rantzer, Optimizing positively dominated systems, in Proc. 51st IEEE Conf. Decis. Control, Maui, Hawaii, USA, 2012, 272-277.doi: 10.1109/CDC.2012.6426312. |
[31] |
A. Rantzer, B. S. Rüffer and G. Dirr, Separable Lyapunov functions for monotone systems, in Proc. 52nd IEEE Conf. Decis. Control, 2013, 4590-4594.doi: 10.1109/CDC.2013.6760604. |
[32] |
B. S. Rüffer, Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean $n$-space, Positivity, 14 (2010), 257-283.doi: 10.1007/s11117-009-0016-5. |
[33] |
B. S. Rüffer, Small-gain conditions and the comparison principle, IEEE Trans. Autom. Control, 55 (2010), 1732-1736.doi: 10.1109/TAC.2010.2048053. |
[34] |
B. S. Rüffer, P. M. Dower and H. Ito, Computational comparison principles for large-scale system stability analysis, in Proc. of the 10th SICE Annual Conference on Control Systems, Kumamoto, Japan, 2010 (electronic). |
[35] |
B. S. Rüffer, H. Ito and P. M. Dower, Computing asymptotic gains of large-scale interconnections, in Proc. 49th IEEE Conf. Decis. Control, 2010, 7413-7418. |
[36] |
B. S. Rüffer, C. M. Kellett and S. R. Weller, Connection between cooperative positive systems and integral input-to-state stability of large-scale systems, Automatica J. IFAC, 46 (2010), 1019-1027.doi: 10.1016/j.automatica.2010.03.012. |
[37] |
H. L. Smith, Monotone Dynamical Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995. |
[38] |
E. D. Sontag, Input to state stability, in The Control Systems Handbook: Control System Advanced Methods (ed. W. S. Levine), 2nd edition, CRC Press, Boca Raton, 2010, 45.1-45.21 (1034-1054). |
[39] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435-443.doi: 10.1109/9.28018. |
[40] |
E. D. Sontag, Comments on integral variants of ISS, Systems Control Lett., 34 (1998), 93-100.doi: 10.1016/S0167-6911(98)00003-6. |
[41] |
E. D. Sontag, Monotone and near-monotone biochemical networks, Systems and Synthetic Biology, 1 (2007), 59-87.doi: 10.1007/s11693-007-9005-9. |
[42] |
E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), 351-359.doi: 10.1016/0167-6911(94)00050-6. |
[43] |
J. A. Yorke, Extending Liapunov's second method to non-Lipschitz Liapunov functions, Bull. Amer. Math. Soc., 74 (1968), 322-325.doi: 10.1090/S0002-9904-1968-11940-8. |
[44] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Publications of the Mathematical Society of Japan, No. 9, The Mathematical Society of Japan, Tokyo, 1966. |