• Previous Article
    Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$
  • DCDS-B Home
  • This Issue
  • Next Article
    Separable Lyapunov functions for monotone systems: Constructions and limitations
October  2015, 20(8): 2527-2551. doi: 10.3934/dcdsb.2015.20.2527

On the homogenization of multicomponent transport

1. 

CMAP, CNRS UMR 7641, École Polytechnique, Route de Saclay, Palaiseau F91128

2. 

DPMMS, CMS, University of Cambridge, Wilberforce road, Cambridge CB3 0WB, United Kingdom

Received  November 2014 Revised  March 2015 Published  August 2015

This paper is devoted to the homogenization of weakly coupled cooperative parabolic systems in strong convection regime with purely periodic coefficients. Our approach is to factor out oscillations from the solution via principal eigenfunctions of an associated spectral problem and to cancel any exponential decay in time of the solution using the principal eigenvalue of the same spectral problem. We employ the notion of two-scale convergence with drift in the asymptotic analysis of the factorized model as the lengthscale of the oscillations tends to zero. This combination of the factorization method and the method of two-scale convergence is applied to upscale an adsorption model for multicomponent flow in an heterogeneous porous medium.
Citation: Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2527-2551. doi: 10.3934/dcdsb.2015.20.2527
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.  doi: 10.1137/0523084.  Google Scholar

[2]

G. Allaire, Periodic homogenization and effective mass theorems for the Schrödinger equation,, in Quantum Transport-Modelling, (1946), 1.  doi: 10.1007/978-3-540-79574-2.  Google Scholar

[3]

G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion,, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91.  doi: 10.1016/S0045-7825(99)00112-7.  Google Scholar

[4]

G. Allaire, Y. Capdeboscq, A. Piatnitski, V. Siess and M. Vanninathan, Homogenization of periodic systems with large potentials,, Arch. Rat. Mech. Anal., 174 (2004), 179.  doi: 10.1007/s00205-004-0332-7.  Google Scholar

[5]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications,, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995) (eds. A. Bourgeat, (1995), 15.   Google Scholar

[6]

G. Allaire, A. Mikelic and A. Piatnitski, Homogenization approach to the dispersion theory for reactive transport through porous media,, SIAM J. Math. Anal., 42 (2010), 125.  doi: 10.1137/090754935.  Google Scholar

[7]

G. Allaire and A. L. Raphael, Homogenization of a convection diffusion model with reaction in a porous medium,, C. R. Math. Acad. Sci. Paris, 344 (2007), 523.  doi: 10.1016/j.crma.2007.03.008.  Google Scholar

[8]

L. Boudin, B. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations,, Discrete Contin. Dyn. Syst. B, 17 (2012), 1427.  doi: 10.3934/dcdsb.2012.17.1427.  Google Scholar

[9]

Y. Capdeboscq, Homogenization of a neutronic multigroup evolution model,, Asymptot. Anal., 24 (2000), 143.   Google Scholar

[10]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 567.  doi: 10.1017/S0308210500001785.  Google Scholar

[11]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics,, J. Math. Pures et Appl., 64 (1985), 31.   Google Scholar

[12]

L. Desvillettes, Th. Lepoutre and A. Moussa, Entropy, duality and cross diffusion,, SIAM Journal on Mathematical Analysis, 46 (2014), 820.  doi: 10.1137/130908701.  Google Scholar

[13]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system,, J. Math. Anal. Appl., 430 (2015), 32.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[14]

P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms,, in Multi Scale Problems and Asymptotic Analysis, (2005), 153.   Google Scholar

[15]

U. Hornung, Homogenization and Porous Media,, Interdiscip. Appl. Math., (1997).  doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[16]

H. Hutridurga, Homogenization of Complex Flows in Porous Media and Applications,, Doctoral Thesis, (2013).   Google Scholar

[17]

V. V. Jikov, Asymptotic behavior and stabilization of solutions of a second order parabolic equation with lowest terms,, Transc. Moscow Math. Soc., 2 (1984), 69.   Google Scholar

[18]

S. Kozlov, Reducibility of quasiperiodic differential operators and averaging,, Transc. Moscow Math. Soc., 2 (1984), 101.   Google Scholar

[19]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows,, preprint, (2013).  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[20]

E. Marusic-Paloka and A. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating co-efficients and strong convection,, Journal of London Math. Soc., 72 (2005), 391.  doi: 10.1112/S0024610705006824.  Google Scholar

[21]

S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins,, NoDEA, 20 (2013), 129.  doi: 10.1007/s00030-012-0156-3.  Google Scholar

[22]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity,, Math. Nachr., 173 (1995), 259.  doi: 10.1002/mana.19951730115.  Google Scholar

[23]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.  doi: 10.1137/0520043.  Google Scholar

[24]

G. Sweers, Strong positivity in $C(\bar\Omega)$ for elliptic systems,, Math. Z., 209 (1992), 251.  doi: 10.1007/BF02570833.  Google Scholar

[25]

M. Vanninathan, Homogenization of eigenvalue problems in perforated domains,, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239.  doi: 10.1007/BF02838079.  Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.  doi: 10.1137/0523084.  Google Scholar

[2]

G. Allaire, Periodic homogenization and effective mass theorems for the Schrödinger equation,, in Quantum Transport-Modelling, (1946), 1.  doi: 10.1007/978-3-540-79574-2.  Google Scholar

[3]

G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion,, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91.  doi: 10.1016/S0045-7825(99)00112-7.  Google Scholar

[4]

G. Allaire, Y. Capdeboscq, A. Piatnitski, V. Siess and M. Vanninathan, Homogenization of periodic systems with large potentials,, Arch. Rat. Mech. Anal., 174 (2004), 179.  doi: 10.1007/s00205-004-0332-7.  Google Scholar

[5]

G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications,, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (May 1995) (eds. A. Bourgeat, (1995), 15.   Google Scholar

[6]

G. Allaire, A. Mikelic and A. Piatnitski, Homogenization approach to the dispersion theory for reactive transport through porous media,, SIAM J. Math. Anal., 42 (2010), 125.  doi: 10.1137/090754935.  Google Scholar

[7]

G. Allaire and A. L. Raphael, Homogenization of a convection diffusion model with reaction in a porous medium,, C. R. Math. Acad. Sci. Paris, 344 (2007), 523.  doi: 10.1016/j.crma.2007.03.008.  Google Scholar

[8]

L. Boudin, B. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations,, Discrete Contin. Dyn. Syst. B, 17 (2012), 1427.  doi: 10.3934/dcdsb.2012.17.1427.  Google Scholar

[9]

Y. Capdeboscq, Homogenization of a neutronic multigroup evolution model,, Asymptot. Anal., 24 (2000), 143.   Google Scholar

[10]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 567.  doi: 10.1017/S0308210500001785.  Google Scholar

[11]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics,, J. Math. Pures et Appl., 64 (1985), 31.   Google Scholar

[12]

L. Desvillettes, Th. Lepoutre and A. Moussa, Entropy, duality and cross diffusion,, SIAM Journal on Mathematical Analysis, 46 (2014), 820.  doi: 10.1137/130908701.  Google Scholar

[13]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system,, J. Math. Anal. Appl., 430 (2015), 32.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[14]

P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms,, in Multi Scale Problems and Asymptotic Analysis, (2005), 153.   Google Scholar

[15]

U. Hornung, Homogenization and Porous Media,, Interdiscip. Appl. Math., (1997).  doi: 10.1007/978-1-4612-1920-0.  Google Scholar

[16]

H. Hutridurga, Homogenization of Complex Flows in Porous Media and Applications,, Doctoral Thesis, (2013).   Google Scholar

[17]

V. V. Jikov, Asymptotic behavior and stabilization of solutions of a second order parabolic equation with lowest terms,, Transc. Moscow Math. Soc., 2 (1984), 69.   Google Scholar

[18]

S. Kozlov, Reducibility of quasiperiodic differential operators and averaging,, Transc. Moscow Math. Soc., 2 (1984), 101.   Google Scholar

[19]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows,, preprint, (2013).  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[20]

E. Marusic-Paloka and A. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating co-efficients and strong convection,, Journal of London Math. Soc., 72 (2005), 391.  doi: 10.1112/S0024610705006824.  Google Scholar

[21]

S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins,, NoDEA, 20 (2013), 129.  doi: 10.1007/s00030-012-0156-3.  Google Scholar

[22]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity,, Math. Nachr., 173 (1995), 259.  doi: 10.1002/mana.19951730115.  Google Scholar

[23]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.  doi: 10.1137/0520043.  Google Scholar

[24]

G. Sweers, Strong positivity in $C(\bar\Omega)$ for elliptic systems,, Math. Z., 209 (1992), 251.  doi: 10.1007/BF02570833.  Google Scholar

[25]

M. Vanninathan, Homogenization of eigenvalue problems in perforated domains,, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239.  doi: 10.1007/BF02838079.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]