# American Institute of Mathematical Sciences

• Previous Article
Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one
• DCDS-B Home
• This Issue
• Next Article
On the homogenization of multicomponent transport
October  2015, 20(8): 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

## Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$

 1 Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain 2 346 TMCB Brigham Young University, Provo, UT 84602 3 Institut für Stochastik, Friedrich Schiller Universität Jena, Ernst Abbe Platz 2, 77043, Jena, Germany

Received  November 2014 Revised  March 2015 Published  August 2015

In this article we are concerned with the study of the existence and uniqueness of pathwise mild solutions to evolutions equations driven by a Hölder continuous function with Hölder exponent in $(1/3,1/2)$. Our stochastic integral is a generalization of the well-known Young integral. To be more precise, the integral is defined by using a fractional integration by parts formula and it involves a tensor for which we need to formulate a new equation. From this it turns out that we have to solve a system consisting of a path and an area equations. In this paper we prove the existence of a unique local solution of the system of equations. The results can be applied to stochastic evolution equations with a non-linear diffusion coefficient driven by a fractional Brownian motion with Hurst parameter in $(1/3,1/2]$, which in particular includes white noise.
Citation: María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553
##### References:
 [1] M. Caruana and P. Friz, Partial differential equations driven by rough paths, J. Differential Equations, 247 (2009), 140-173. doi: 10.1016/j.jde.2009.01.026. [2] M. Caruana, P. Friz and H. Oberhauser, A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 27-46. doi: 10.1016/j.anihpc.2010.11.002. [3] Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs and random dynamical systems, Discrete and Continuous Dynamical Systems, Series A, 34 (2014), 79-98. doi: 10.3934/dcds.2014.34.79. [4] A. Deya, A. Neuenkirch and S. Tindel, A Milstein-type scheme without Lévy area terms for SDES driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 48 (2012), 518-550. doi: 10.1214/10-AIHP392. [5] A. Deya, M. Gubinelli and S. Tindel, Non-linear rough heat equations, Probab. Theory Relat. Fields, 153 (2012), 97-147. doi: 10.1007/s00440-011-0341-z. [6] P. Friz and H. Oberhauser, On the splitting-up method for rough (partial) differential equations, J. Differential Equations, 251 (2011), 316-338. doi: 10.1016/j.jde.2011.02.009. [7] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies of Advanced Mathematics, Vol. 120, Cambridge University Press, 2010. doi: 10.1017/CBO9780511845079. [8] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 473-493. doi: 10.3934/dcdsb.2010.14.473. [9] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Compensated fractional derivatives and stochastic evolution equations, Comptes Rendus Mathématique, 350 (2012), 1037-1042. doi: 10.1016/j.crma.2012.11.007. [10] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameter $H\in (1/3,1/2]$,, , (). [11] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy areas of Ornstein-Uhlenbeck processes in Hilbert spaces, Studies in Systems, Decision and Control, Springer, 30 (2015), 167-188. doi: 10.1007/978-3-319-19075-4_10. [12] M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion, International Journal of Bifurcation and Chaos, 20 (2010), 2761-2782. doi: 10.1142/S0218127410027349. [13] M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs, Potential Anal., 25 (2006), 307-326. doi: 10.1007/s11118-006-9013-5. [14] M. Gubinelli and S. Tindel, Rough Evolution Equations, The Annals of Probability, 38 (2010), 1-75. doi: 10.1214/08-AOP437. [15] M. Hinz and M. Zähle, Gradient type noises II-Systems of stochastic partial differential equations, Journal of Functional Analysis, 256 (2009), 3192-3235. doi: 10.1016/j.jfa.2009.02.006. [16] Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., 361 (2009), 2689-2718. doi: 10.1090/S0002-9947-08-04631-X. [17] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary theory, Graduate Studies in Mathematics, AMS, 1997. [18] T. Lyons and Z. Qian, System control and rough paths, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198506485.001.0001. [19] B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305. doi: 10.1016/S0022-1236(02)00065-4. [20] D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81. [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1. [22] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland and Philadelphia, Pa., USA, 1993. [23] L. C. Young, An integration of Höder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251-282. doi: 10.1007/BF02401743. [24] M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields, 111 (1998), 333-374. doi: 10.1007/s004400050171.

show all references

##### References:
 [1] M. Caruana and P. Friz, Partial differential equations driven by rough paths, J. Differential Equations, 247 (2009), 140-173. doi: 10.1016/j.jde.2009.01.026. [2] M. Caruana, P. Friz and H. Oberhauser, A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 27-46. doi: 10.1016/j.anihpc.2010.11.002. [3] Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs and random dynamical systems, Discrete and Continuous Dynamical Systems, Series A, 34 (2014), 79-98. doi: 10.3934/dcds.2014.34.79. [4] A. Deya, A. Neuenkirch and S. Tindel, A Milstein-type scheme without Lévy area terms for SDES driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 48 (2012), 518-550. doi: 10.1214/10-AIHP392. [5] A. Deya, M. Gubinelli and S. Tindel, Non-linear rough heat equations, Probab. Theory Relat. Fields, 153 (2012), 97-147. doi: 10.1007/s00440-011-0341-z. [6] P. Friz and H. Oberhauser, On the splitting-up method for rough (partial) differential equations, J. Differential Equations, 251 (2011), 316-338. doi: 10.1016/j.jde.2011.02.009. [7] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies of Advanced Mathematics, Vol. 120, Cambridge University Press, 2010. doi: 10.1017/CBO9780511845079. [8] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 473-493. doi: 10.3934/dcdsb.2010.14.473. [9] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Compensated fractional derivatives and stochastic evolution equations, Comptes Rendus Mathématique, 350 (2012), 1037-1042. doi: 10.1016/j.crma.2012.11.007. [10] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameter $H\in (1/3,1/2]$,, , (). [11] M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy areas of Ornstein-Uhlenbeck processes in Hilbert spaces, Studies in Systems, Decision and Control, Springer, 30 (2015), 167-188. doi: 10.1007/978-3-319-19075-4_10. [12] M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion, International Journal of Bifurcation and Chaos, 20 (2010), 2761-2782. doi: 10.1142/S0218127410027349. [13] M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs, Potential Anal., 25 (2006), 307-326. doi: 10.1007/s11118-006-9013-5. [14] M. Gubinelli and S. Tindel, Rough Evolution Equations, The Annals of Probability, 38 (2010), 1-75. doi: 10.1214/08-AOP437. [15] M. Hinz and M. Zähle, Gradient type noises II-Systems of stochastic partial differential equations, Journal of Functional Analysis, 256 (2009), 3192-3235. doi: 10.1016/j.jfa.2009.02.006. [16] Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., 361 (2009), 2689-2718. doi: 10.1090/S0002-9947-08-04631-X. [17] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary theory, Graduate Studies in Mathematics, AMS, 1997. [18] T. Lyons and Z. Qian, System control and rough paths, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198506485.001.0001. [19] B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305. doi: 10.1016/S0022-1236(02)00065-4. [20] D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81. [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1. [22] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland and Philadelphia, Pa., USA, 1993. [23] L. C. Young, An integration of Höder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251-282. doi: 10.1007/BF02401743. [24] M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields, 111 (1998), 333-374. doi: 10.1007/s004400050171.
 [1] Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541 [2] Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 [3] Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 [4] Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 [5] Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 [6] Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435 [7] María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 [8] Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 [9] Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 [10] Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 [11] Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022027 [12] Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157 [13] Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations and Control Theory, 2022, 11 (3) : 925-937. doi: 10.3934/eect.2021031 [14] Arzu Ahmadova, Nazim I. Mahmudov, Juan J. Nieto. Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022008 [15] Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233 [16] Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 [17] Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure and Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038 [18] Yiju Chen, Xiaohu Wang, Kenan Wu. Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022059 [19] Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $1/2$. Evolution Equations and Control Theory, 2021, 10 (4) : 921-935. doi: 10.3934/eect.2020096 [20] Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

2020 Impact Factor: 1.327