• Previous Article
    Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system
  • DCDS-B Home
  • This Issue
  • Next Article
    Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$
October  2015, 20(8): 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

2. 

Center for Computational Geosciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049

Received  October 2014 Revised  April 2015 Published  August 2015

In this paper, we study a fully discrete finite element method with second order accuracy in time for the equations of motion arising in the Oldroyd model of viscoelastic fluids. This method is based on a finite element approximation for the space discretization and the Crank-Nicolson/Adams-Bashforth scheme for the time discretization. The integral term is discretized by the trapezoidal rule to match with the second order accuracy in time. It leads to a linear system with a constant matrix and thus greatly increases the computational efficiency. Taking the nonnegativity of the quadrature rule and the technique of variable substitution for the trapezoidal rule approximation, we prove that this fully discrete finite element method is almost unconditionally stable and convergent. Furthermore, by the negative norm technique, we derive the $H^1$ and $L^2$-optimal error estimates of the velocity and the pressure.
Citation: Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

Yu. Ya. Agranovich and P. E. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid,, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 86 (1989), 3.   Google Scholar

[3]

A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations,, Numer. Math., 68 (1994), 189.  doi: 10.1007/s002110050056.  Google Scholar

[4]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[5]

V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[6]

D. Goswami and A. K. Pani, A priori error estimates for semidiscrete finite element approxi- mations to the equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.   Google Scholar

[7]

D. Goswami and A. K. Pani, Backward Euler method for the equations of motion arising in Oldroyd fluids of order one with nonsmooth initial data,, preprint, ().   Google Scholar

[8]

D. Goswami, A two-level finite element method for viscoelastic fluid flow: Non-smooth initial data,, preprint, ().   Google Scholar

[9]

Y. He and K. Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations,, Numer. Math., 79 (1998), 77.  doi: 10.1007/s002110050332.  Google Scholar

[10]

Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations,, SIAM J. Numer. Anal., 41 (2003), 1263.  doi: 10.1137/S0036142901385659.  Google Scholar

[11]

Y. He and K. M. Liu, A multilevel finite element method in space-time for the Navier-Stokes problem,, Numer. Methods Partial Differential Equations, 21 (2005), 1052.  doi: 10.1002/num.20077.  Google Scholar

[12]

Y. He, Y. Lin, S. S. P. Shen, W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.  doi: 10.1016/S0377-0427(02)00864-6.  Google Scholar

[13]

Y. He, Y. Lin, S. S. P. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.   Google Scholar

[14]

Y. He and W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations,, SIAM J. Numer. Anal., 45 (2007), 837.  doi: 10.1137/050639910.  Google Scholar

[15]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar

[16]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: Error estimates for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[17]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations,, IMA J. Numer. Anal., 20 (2000), 633.  doi: 10.1093/imanum/20.4.633.  Google Scholar

[18]

D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids,, Springer Verlag, (1990).  doi: 10.1007/978-1-4612-4462-2.  Google Scholar

[19]

N. A. Karzeeva, A. A. Kot.siolis and A. P. Oskolkov, On dynamical system generated by initial-boundary value problems for the equations of motion of linear viscoelastic fluids,, Boundary value problems of mathematical physics, 188 (1990), 59.   Google Scholar

[20]

R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon,, J. Functional Anal., 21 (1976), 397.  doi: 10.1016/0022-1236(76)90035-5.  Google Scholar

[21]

A. A. Kotsiolis, A. P. Oskolkov and R. D. Shadiev, A priori estimate on the semiaxis $t\geq0$ for the solutions of the equations of motion of linear viscoelastic fluids with an infinite Dirichlet integral and their applications,, J. Soviet Math., 62 (1992), 2777.  doi: 10.1007/BF01671001.  Google Scholar

[22]

S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348.  doi: 10.1137/0726019.  Google Scholar

[23]

W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term,, J. Austral. Math. Soc. Ser. B, 35 (1993), 23.  doi: 10.1017/S0334270000007268.  Google Scholar

[24]

A. P. Oskolkov, Initial-boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids,, Boundary value problems of mathematical physics, 179 (1988), 126.   Google Scholar

[25]

A. P. Oskolkov and D. V. Emel'yanova, Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids,, (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 189 (1991), 101.  doi: 10.1007/BF01097499.  Google Scholar

[26]

A. K. Pani and J. Y. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.  doi: 10.1093/imanum/dri016.  Google Scholar

[27]

A. K. Pani, J. Y. Yuan and P. Damazio, On a linearized backward Euler method for the equations of motion arising in the Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.  doi: 10.1137/S0036142903428967.  Google Scholar

[28]

J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201.  doi: 10.1080/00036819008839963.  Google Scholar

[29]

Z. Si, W. Li and Y. Wang, A gauge-Uzawa finite element method for the time-dependent Viscoelastic Oldroyd flows,, J. Math. Anal. Appl., 425 (2015), 96.  doi: 10.1016/j.jmaa.2014.12.020.  Google Scholar

[30]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (1984).   Google Scholar

[31]

K. Wang, Y. He and Y. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Continuous Dynam. Systems-B, 13 (2010), 665.  doi: 10.3934/dcdsb.2010.13.665.  Google Scholar

[32]

K. Wang, Y. He and X. Feng, On error estimates of the fully discrete penalty method for the viscoelastic flow problem,, Int. J. Comput. Math, 88 (2011), 2199.  doi: 10.1080/00207160.2010.534781.  Google Scholar

[33]

K. Wang, Y. Lin and Y. He, Asymptotic analysis of the equations of motion for viscoealstic Oldroyd fluid,, Discrete Contin. Dyn. Syst, 32 (2012), 657.   Google Scholar

[34]

K. Wang, Z. Si and Y. Yang, Stabilized finite element method for the viscoelastic Oldroyd fluid flows,, Numer. Algorithms, 60 (2012), 75.  doi: 10.1007/s11075-011-9512-3.  Google Scholar

[35]

K. Wang, Y. He and Y. Lin, Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows,, Discrete Continuous Dynam. Systems-B, 17 (2012), 1551.  doi: 10.3934/dcdsb.2012.17.1551.  Google Scholar

[36]

W. L. Wilkinson, Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer,, Pergamon Press, (1960).   Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

Yu. Ya. Agranovich and P. E. Sobolevskiĭ, Investigation of a mathematical model of a viscoelastic fluid,, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 86 (1989), 3.   Google Scholar

[3]

A. Ait Ou Ammi and M. Marion, Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equations,, Numer. Math., 68 (1994), 189.  doi: 10.1007/s002110050056.  Google Scholar

[4]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland, (1978).   Google Scholar

[5]

V. Girault and P. A. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms,, Springer-Verlag, (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[6]

D. Goswami and A. K. Pani, A priori error estimates for semidiscrete finite element approxi- mations to the equations of motion arising in Oldroyd fluids of order one,, Int. J. Numer. Anal. Model., 8 (2011), 324.   Google Scholar

[7]

D. Goswami and A. K. Pani, Backward Euler method for the equations of motion arising in Oldroyd fluids of order one with nonsmooth initial data,, preprint, ().   Google Scholar

[8]

D. Goswami, A two-level finite element method for viscoelastic fluid flow: Non-smooth initial data,, preprint, ().   Google Scholar

[9]

Y. He and K. Li, Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations,, Numer. Math., 79 (1998), 77.  doi: 10.1007/s002110050332.  Google Scholar

[10]

Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations,, SIAM J. Numer. Anal., 41 (2003), 1263.  doi: 10.1137/S0036142901385659.  Google Scholar

[11]

Y. He and K. M. Liu, A multilevel finite element method in space-time for the Navier-Stokes problem,, Numer. Methods Partial Differential Equations, 21 (2005), 1052.  doi: 10.1002/num.20077.  Google Scholar

[12]

Y. He, Y. Lin, S. S. P. Shen, W. Sun and R. Tait, Finite element approximation for the viscoelastic fluid motion problem,, J. Comput. Appl. Math., 155 (2003), 201.  doi: 10.1016/S0377-0427(02)00864-6.  Google Scholar

[13]

Y. He, Y. Lin, S. S. P. Shen and R. Tait, On the convergence of viscoelastic fluid flows to a steady state,, Adv. Differential Equations, 7 (2002), 717.   Google Scholar

[14]

Y. He and W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations,, SIAM J. Numer. Anal., 45 (2007), 837.  doi: 10.1137/050639910.  Google Scholar

[15]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275.  doi: 10.1137/0719018.  Google Scholar

[16]

J. G. Heywood and R. Rannacher, Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: Error estimates for second-order time discretization,, SIAM J. Numer. Anal., 27 (1990), 353.  doi: 10.1137/0727022.  Google Scholar

[17]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations,, IMA J. Numer. Anal., 20 (2000), 633.  doi: 10.1093/imanum/20.4.633.  Google Scholar

[18]

D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids,, Springer Verlag, (1990).  doi: 10.1007/978-1-4612-4462-2.  Google Scholar

[19]

N. A. Karzeeva, A. A. Kot.siolis and A. P. Oskolkov, On dynamical system generated by initial-boundary value problems for the equations of motion of linear viscoelastic fluids,, Boundary value problems of mathematical physics, 188 (1990), 59.   Google Scholar

[20]

R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon,, J. Functional Anal., 21 (1976), 397.  doi: 10.1016/0022-1236(76)90035-5.  Google Scholar

[21]

A. A. Kotsiolis, A. P. Oskolkov and R. D. Shadiev, A priori estimate on the semiaxis $t\geq0$ for the solutions of the equations of motion of linear viscoelastic fluids with an infinite Dirichlet integral and their applications,, J. Soviet Math., 62 (1992), 2777.  doi: 10.1007/BF01671001.  Google Scholar

[22]

S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348.  doi: 10.1137/0726019.  Google Scholar

[23]

W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term,, J. Austral. Math. Soc. Ser. B, 35 (1993), 23.  doi: 10.1017/S0334270000007268.  Google Scholar

[24]

A. P. Oskolkov, Initial-boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids,, Boundary value problems of mathematical physics, 179 (1988), 126.   Google Scholar

[25]

A. P. Oskolkov and D. V. Emel'yanova, Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids,, (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., 189 (1991), 101.  doi: 10.1007/BF01097499.  Google Scholar

[26]

A. K. Pani and J. Y. Yuan, Semidiscrete finite element Galerkin approximations to the equations of motion arising in the Oldroyd model,, IMA J. Numer. Anal., 25 (2005), 750.  doi: 10.1093/imanum/dri016.  Google Scholar

[27]

A. K. Pani, J. Y. Yuan and P. Damazio, On a linearized backward Euler method for the equations of motion arising in the Oldroyd fluids of order one,, SIAM J. Numer. Anal., 44 (2006), 804.  doi: 10.1137/S0036142903428967.  Google Scholar

[28]

J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201.  doi: 10.1080/00036819008839963.  Google Scholar

[29]

Z. Si, W. Li and Y. Wang, A gauge-Uzawa finite element method for the time-dependent Viscoelastic Oldroyd flows,, J. Math. Anal. Appl., 425 (2015), 96.  doi: 10.1016/j.jmaa.2014.12.020.  Google Scholar

[30]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (1984).   Google Scholar

[31]

K. Wang, Y. He and Y. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations,, Discrete Continuous Dynam. Systems-B, 13 (2010), 665.  doi: 10.3934/dcdsb.2010.13.665.  Google Scholar

[32]

K. Wang, Y. He and X. Feng, On error estimates of the fully discrete penalty method for the viscoelastic flow problem,, Int. J. Comput. Math, 88 (2011), 2199.  doi: 10.1080/00207160.2010.534781.  Google Scholar

[33]

K. Wang, Y. Lin and Y. He, Asymptotic analysis of the equations of motion for viscoealstic Oldroyd fluid,, Discrete Contin. Dyn. Syst, 32 (2012), 657.   Google Scholar

[34]

K. Wang, Z. Si and Y. Yang, Stabilized finite element method for the viscoelastic Oldroyd fluid flows,, Numer. Algorithms, 60 (2012), 75.  doi: 10.1007/s11075-011-9512-3.  Google Scholar

[35]

K. Wang, Y. He and Y. Lin, Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows,, Discrete Continuous Dynam. Systems-B, 17 (2012), 1551.  doi: 10.3934/dcdsb.2012.17.1551.  Google Scholar

[36]

W. L. Wilkinson, Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer,, Pergamon Press, (1960).   Google Scholar

[1]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]