\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Graph-theoretic approach to stability of multi-group models with dispersal

Abstract Related Papers Cited by
  • This paper is mainly concerned with the issue of stability for multi-group models with dispersal (MGMD). A system on multi-digraph is used to model the MGMD. The popular single graph-based method has been successfully generalized into multi-digraph-based approach. More precisely, by constructing a Lyapunov function for general MGMD, some simple yet less conservative conditions are derived for the stability of MGMD. Furthermore, the graph-theoretic method on multi-graph is successfully applied on predator-prey model with dispersal and coupled oscillators on two digraphs. Subsequently, numerical results are presented to demonstrate the effectiveness of the proposed new technique.
    Mathematics Subject Classification: Primary: 34K20; Secondary: 34C15, 92B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Chen and A. Huang, On a nonautonomous predator-prey model with prey dispersal, Appl. Math. Comput., 184 (2007), 809-822.doi: 10.1016/j.amc.2006.06.072.

    [2]

    H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400.doi: 10.1016/j.amc.2011.10.015.

    [3]

    H. Chen and J. Sun, Stability analysis for coupled systems with time delay on networks, Physica A., 391 (2012), 528-534.doi: 10.1016/j.physa.2011.08.037.

    [4]

    H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802.doi: 10.1090/S0002-9939-08-09341-6.

    [5]

    H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst.-Ser. B, 17 (2012), 2413-2430.doi: 10.3934/dcdsb.2012.17.2413.

    [6]

    N. Hirano and S. Rybicki, Existence of limit cycles for coupled van der Pol equations, J. Differ. Equ., 195 (2003), 194-209.doi: 10.1016/S0022-0396(03)00212-2.

    [7]

    C. Ji, D. Jiang and N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A., 390 (2011), 1747-1762.

    [8]

    C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.doi: 10.1016/j.automatica.2011.09.044.

    [9]

    Y. Kuang and Y. Takeuchi, Predator-prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci., 120 (1994), 77-98.doi: 10.1016/0025-5564(94)90038-8.

    [10]

    M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47doi: 10.1016/j.jmaa.2009.09.017.

    [11]

    M. Y. Li and Z. Shuai, Global stability of an epidemic model in a patchy environment, Canad. Appl. Math. Quart., 17 (2009), 175-187.

    [12]

    M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003.

    [13]

    W. Li, H. Su and K. Wang, Global stability analysis for stochastic coupled systems on networks, Automatica, 47 (2011), 215-220.doi: 10.1016/j.automatica.2010.10.041.

    [14]

    W. Li, L. Pang, H. Su and K. Wang, Global stability for discrete Cohen-Grossberg neural networks with finite and infinite delays, Appl. Math. Lett., 25 (2012), 2246-2251.doi: 10.1016/j.aml.2012.06.011.

    [15]

    W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609-2616.doi: 10.1016/j.cnsns.2011.09.039.

    [16]

    W. Li, H. Song, Y. Qu and K. Wang, Global exponential stability for stochastic coupled systems on networks with Markovian switching, Syst. Control Lett., 62 (2013), 468-474.doi: 10.1016/j.sysconle.2013.03.001.

    [17]

    L. Liu, W. Cai and Y. Wu, Global dynamics for an SIR patchy model with susceptibles dispersal, Adv. Differ. Equ., 131 (2012), 1-11.doi: 10.1186/1687-1847-2012-131.

    [18]

    A. L. Lloyd and V. A. A. Jansen, Spatiotemporal dynamics of epidemics: Synchrony in metapopulation models, Math. Biosci., 188 (2004), 1-16.doi: 10.1016/j.mbs.2003.09.003.

    [19]

    X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.doi: 10.1142/p473.

    [20]

    Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group sir epidemic models with patches through migration and cross patch infection, Acta Math. Sci., 33 (2013), 341-361.doi: 10.1016/S0252-9602(13)60003-X.

    [21]

    H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA, 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016.

    [22]

    H. Su, W. Li and K. Wang, Global stability analysis of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135.doi: 10.1063/1.4748851.

    [23]

    J. Suo, J. Sun and Y. Zhang, Stability analysis for impulsive coupled systems on networks, Neurocomputing, 99 (2013), 172-177.doi: 10.1016/j.neucom.2012.06.002.

    [24]

    H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.

    [25]

    J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235-258.doi: 10.1142/S021833901250009X.

    [26]

    W. Wang and X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.doi: 10.1016/j.mbs.2002.11.001.

    [27]

    D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

    [28]

    C. Xu, X. Tang and M. Liao, Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments, Appl. Math. Comput., 216 (2010), 2920-2936.doi: 10.1016/j.amc.2010.04.004.

    [29]

    R. Xu and Z. Ma, The effect of dispersal on the permanence of a predator-prey system with time delay, Nonlinear Anal. RWA, 9 (2008), 354-369.doi: 10.1016/j.nonrwa.2006.11.004.

    [30]

    Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Anal. RWA, 14 (2013), 1434-1456.doi: 10.1016/j.nonrwa.2012.10.007.

    [31]

    C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling, Appl. Math. Model., 37 (2013), 5394-5402.doi: 10.1016/j.apm.2012.10.032.

    [32]

    C. Zhang, W. Li, H. Su and K. Wang, A graph-theoretic approach to boundedness of stochastic Cohen-Grossberg neural networks with Markovian switching, Appl. Math. Comput., 219 (2013), 9165-9173.doi: 10.1016/j.amc.2013.03.048.

    [33]

    C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling, Math. Meth. Appl. Sci., 37 (2014), 1179-1190.doi: 10.1002/mma.2879.

    [34]

    L. Zu, D. Jiang and F. Jiang, Existence, stationary distribution, and extinction of predator-prey system of prey dispersal with stochastic perturbation, Abstract Appl. Anal., 2012 (2012), 1-24.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return