• Previous Article
    Analytic integrability of a class of planar polynomial differential systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one
October  2015, 20(8): 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system

1. 

School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China

2. 

Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China

3. 

LMAM, CAPT and School of Mathematical Sciences, Peking University, Beijing, 100871

Received  October 2014 Revised  January 2015 Published  August 2015

In this paper, we consider a hydrodynamic $Q$-tensor system for nematic liquid crystal flow, which is derived from Doi-Onsager molecular theory by the Bingham closure. We first prove the existence and uniqueness of local strong solution. Furthermore, by taking Deborah number goes to zero and using the Hilbert expansion method, we present a rigorous derivation from the molecule-based $Q$-tensor theory to the Ericksen-Leslie theory.
Citation: Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611
References:
[1]

H. Abels, G. Dolzmann and Y. Liu, Well-posedness of a fully-coupled Navier-Stokes/$Q$-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050-3077. doi: 10.1137/130945405.

[2]

H. Abels, G. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions,, preprint, (). 

[3]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Fundamental Principles of Mathematical Sciences, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[4]

J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525 (2010), 1-11. doi: 10.1080/15421401003795555.

[5]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford Engrg. Sci. Ser., 36, Oxford University Press, Oxford, New York, 1994.

[6]

P. G. De Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1974.

[7]

W. E and P. Zhang, A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit, Methods Appl. Anal., 13 (2006), 181-198. doi: 10.4310/MAA.2006.v13.n2.a5.

[8]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34. doi: 10.1122/1.548883.

[9]

I. Fatkullin and V. Slastikov, Critical points of the Onsager functional on a sphere, Nonlinearity, 18 (2005), 2565-2580. doi: 10.1088/0951-7715/18/6/008.

[10]

J. Feng, C. V. Chaubal and L. G. Leal, Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers?, J. Rheol., 42 (1998), 1095-1119. doi: 10.1122/1.550920.

[11]

J. Feng, G. Sgalari and L. G. Leal, A theory for flowing nematic polymers with orientational distortion, J. Rheol., 44 (2000), 1085-1101. doi: 10.1122/1.1289278.

[12]

J. Han, Y. Luo, W. Wang, P. Zhang and Z. Zhang, From microscopic theory to macroscopic theory: A systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), 741-809. doi: 10.1007/s00205-014-0792-3.

[13]

J. Huang and S. Ding, Global well-posedness for a coupled incompressible Navier-Stokes and Q-tensor system,, preprint, (). 

[14]

J. Huang, F. H Lin and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb R^2$, Commun. Math. Phys., 331 (2014), 805-850. doi: 10.1007/s00220-014-2079-9.

[15]

N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation, J. Phys. Soc. Japan, 52 (1983), 3486-3494. doi: 10.1143/JPSJ.52.3486.

[16]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[17]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102.

[18]

H. Liu, H. Zhang and P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential, Comm. Math. Sci., 3 (2005), 201-218. doi: 10.4310/CMS.2005.v3.n2.a7.

[19]

A. Majumdar and A. Zarnescu, Landau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227-280. doi: 10.1007/s00205-009-0249-2.

[20]

N. J. Mottram and C. J. P. Newton, Introduction to $Q$-tensor theory,, preprint, (). 

[21]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and $Q$-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67. doi: 10.1007/s00205-011-0443-x.

[22]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and $Q$-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049. doi: 10.1137/10079224X.

[23]

O. Parodi, Stress tensor for a nematic liquid crystal, J. Phys. France, 31 (1970), 581-584. doi: 10.1051/jphys:01970003107058100.

[24]

T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), 7475-7485. doi: 10.1103/PhysRevE.58.7475.

[25]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, Boston, 1983. doi: 10.1007/978-3-0346-0416-1.

[26]

M. Wang and W. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system, Calc. Var. Partial Differ. Equ., 51 (2014), 915-962. doi: 10.1007/s00526-013-0700-y.

[27]

W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398. doi: 10.1002/cpa.21549.

[28]

W. Wang, P. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837-855. doi: 10.1007/s00205-013-0659-z.

[29]

W. Wang, P. Zhang and Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), 127-158. doi: 10.1137/13093529X.

show all references

References:
[1]

H. Abels, G. Dolzmann and Y. Liu, Well-posedness of a fully-coupled Navier-Stokes/$Q$-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050-3077. doi: 10.1137/130945405.

[2]

H. Abels, G. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions,, preprint, (). 

[3]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Fundamental Principles of Mathematical Sciences, 343, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[4]

J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525 (2010), 1-11. doi: 10.1080/15421401003795555.

[5]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxford Engrg. Sci. Ser., 36, Oxford University Press, Oxford, New York, 1994.

[6]

P. G. De Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1974.

[7]

W. E and P. Zhang, A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit, Methods Appl. Anal., 13 (2006), 181-198. doi: 10.4310/MAA.2006.v13.n2.a5.

[8]

J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34. doi: 10.1122/1.548883.

[9]

I. Fatkullin and V. Slastikov, Critical points of the Onsager functional on a sphere, Nonlinearity, 18 (2005), 2565-2580. doi: 10.1088/0951-7715/18/6/008.

[10]

J. Feng, C. V. Chaubal and L. G. Leal, Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers?, J. Rheol., 42 (1998), 1095-1119. doi: 10.1122/1.550920.

[11]

J. Feng, G. Sgalari and L. G. Leal, A theory for flowing nematic polymers with orientational distortion, J. Rheol., 44 (2000), 1085-1101. doi: 10.1122/1.1289278.

[12]

J. Han, Y. Luo, W. Wang, P. Zhang and Z. Zhang, From microscopic theory to macroscopic theory: A systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), 741-809. doi: 10.1007/s00205-014-0792-3.

[13]

J. Huang and S. Ding, Global well-posedness for a coupled incompressible Navier-Stokes and Q-tensor system,, preprint, (). 

[14]

J. Huang, F. H Lin and C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in $\mathbb R^2$, Commun. Math. Phys., 331 (2014), 805-850. doi: 10.1007/s00220-014-2079-9.

[15]

N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation, J. Phys. Soc. Japan, 52 (1983), 3486-3494. doi: 10.1143/JPSJ.52.3486.

[16]

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[17]

F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102.

[18]

H. Liu, H. Zhang and P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential, Comm. Math. Sci., 3 (2005), 201-218. doi: 10.4310/CMS.2005.v3.n2.a7.

[19]

A. Majumdar and A. Zarnescu, Landau-De Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227-280. doi: 10.1007/s00205-009-0249-2.

[20]

N. J. Mottram and C. J. P. Newton, Introduction to $Q$-tensor theory,, preprint, (). 

[21]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and $Q$-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67. doi: 10.1007/s00205-011-0443-x.

[22]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and $Q$-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049. doi: 10.1137/10079224X.

[23]

O. Parodi, Stress tensor for a nematic liquid crystal, J. Phys. France, 31 (1970), 581-584. doi: 10.1051/jphys:01970003107058100.

[24]

T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), 7475-7485. doi: 10.1103/PhysRevE.58.7475.

[25]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, Boston, 1983. doi: 10.1007/978-3-0346-0416-1.

[26]

M. Wang and W. Wang, Global existence of weak solution for the 2-D Ericksen-Leslie system, Calc. Var. Partial Differ. Equ., 51 (2014), 915-962. doi: 10.1007/s00526-013-0700-y.

[27]

W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Comm. Pure Appl. Math., 68 (2015), 1326-1398. doi: 10.1002/cpa.21549.

[28]

W. Wang, P. Zhang and Z. Zhang, Well-posedness of the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 210 (2013), 837-855. doi: 10.1007/s00205-013-0659-z.

[29]

W. Wang, P. Zhang and Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), 127-158. doi: 10.1137/13093529X.

[1]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[2]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[3]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[4]

Stefano Bosia. Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2012, 11 (2) : 407-441. doi: 10.3934/cpaa.2012.11.407

[5]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[6]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[7]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[8]

Jinrui Huang, Wenjun Wang, Huanyao Wen. On $ L^p $ estimates for a simplified Ericksen-Leslie system. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1485-1507. doi: 10.3934/cpaa.2020075

[9]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[10]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[11]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[12]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[13]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[14]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic and Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[17]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[18]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[19]

Hengrong Du, Changyou Wang. Global weak solutions to the stochastic Ericksen–Leslie system in dimension two. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2175-2197. doi: 10.3934/dcds.2021187

[20]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]