October  2015, 20(8): 2663-2690. doi: 10.3934/dcdsb.2015.20.2663

Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays

1. 

Departamento de Mátematicas, Universidad Centro Occidental Lisandro Alvarado, Barquisimeto, Estado Lara, Venezuela, Venezuela

Received  October 2014 Revised  April 2015 Published  August 2015

The qualitative properties of certain type of nonautonomous competitive Lotka-Volterra systems with infinite delay are considered.
    By constructing suitable Lyapunov-type functional, we establish a series of easily verifiable algebraic conditions on the coefficients and the kernels, which are sufficient to ensure the extinction and survival of a determined number of species. The surviving part stabilizes around any solution of a subsystem of the systems in study. These conditions also guarantee the persistence, extreme stability and asymptotic behavior of the systems.
Citation: Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663
References:
[1]

S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra systems,, Proc. Amer. Math. Soc., 127 (1999), 2905.  doi: 10.1090/S0002-9939-99-05083-2.  Google Scholar

[2]

S. Ahmad, On the nonautonomous Volterra-Lotka competition equations,, Proc. Amer. Math. Soc., 117 (1993), 199.  doi: 10.1090/S0002-9939-1993-1143013-3.  Google Scholar

[3]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations,, J. Math. Anal. Appl., 127 (1987), 377.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[4]

A. Battauz and F. Zanolin, Coexistence states for periodic competitive Kolmogorov systems,, J. Math. Anal. Appl., 219 (1998), 179.  doi: 10.1006/jmaa.1997.5726.  Google Scholar

[5]

A. Bermand and R. Plemmons, Nonnegative Matrices in The Mathematical Sciences,, Classics in Applied Mathematics, (1979).   Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.   Google Scholar

[7]

F. Chen, Z. Li and Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls,, Nonlinear Analysis: Real World Applications, 8 (2007), 680.  doi: 10.1016/j.nonrwa.2006.02.006.  Google Scholar

[8]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion,, SIAM J. Appl. Math., 44 (1984), 1112.  doi: 10.1137/0144080.  Google Scholar

[9]

L. Dung and H. L. Smith, Steady states of models of microbial growth and competition with chemotaxis,, J Math. Anal. Appl., 229 (1999), 295.  doi: 10.1006/jmaa.1998.6167.  Google Scholar

[10]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, Journal of Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[11]

C. Feng, On the existence and uniqueness of almost periodic solutions for delay Logistic equations,, Applied Mathematics and Computation, 136 (2003), 487.  doi: 10.1016/S0096-3003(02)00072-3.  Google Scholar

[12]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of population dynamics,, Mathematics and Its Applications, (1992).  doi: 10.1007/978-94-015-7920-9.  Google Scholar

[13]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied Mathematical Sciences, 99 (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[14]

X. He, Almost periodic solutions of a competition system with dominated infinite delays,, Tohoku Math. J., 50 (1998), 71.  doi: 10.2748/tmj/1178225015.  Google Scholar

[15]

Z. Hou, Permanence, global attraction and stability,, in Lotka-Volterra and Related Systems, (2013), 1.   Google Scholar

[16]

H. Hu, Z. Teng and S. Gao, Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls,, Nonlinear Analysis: Real World Applications, 10 (2009), 2508.  doi: 10.1016/j.nonrwa.2008.05.011.  Google Scholar

[17]

H. Hu, Z. Teng and H. Jiang, On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls,, Nonlinear Analysis: Real World Applications, 10 (2009), 1803.  doi: 10.1016/j.nonrwa.2008.02.017.  Google Scholar

[18]

F. Montes de Oca and L. Pérez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay,, Nonlinear Analysis: Theory, 75 (2012), 758.  doi: 10.1016/j.na.2011.09.009.  Google Scholar

[19]

F. Montes de Oca and M. Vivas, Extinction in a two dimensional Lotka-Volterra systems with infinite delay,, Nonlinear Analysis: Real World Applications, 7 (2006), 1042.  doi: 10.1016/j.nonrwa.2005.09.005.  Google Scholar

[20]

F. Montes de Oca and M. L. Zeeman, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems,, J. Math. Anal. Appl., 192 (1995), 360.  doi: 10.1006/jmaa.1995.1177.  Google Scholar

[21]

C. Shi, Z. Li and F. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls,, Nonlinear Analysis: Real World Applications, 13 (2012), 2214.  doi: 10.1016/j.nonrwa.2012.01.016.  Google Scholar

[22]

Z. Teng, On the nonautonomous Lotka-Volerra N-species competing systems,, Appl. Math.Comp. 114 (2000), 114 (2000), 175.   Google Scholar

[23]

A. Tineo, On the asymptotic behaviour of some population models,, J. Math. Anal. Appl., 167 (1992), 516.  doi: 10.1016/0022-247X(92)90222-Y.  Google Scholar

[24]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems,, Results Math., 21 (1992), 224.  doi: 10.1007/BF03323081.  Google Scholar

[25]

J. Zhao and J. Tiang, Average conditions for permanence and extinction in nonautonomous Lotka-Voltera systems,, JMAA, 299 (2004), 663.  doi: 10.1016/j.jmaa.2004.06.019.  Google Scholar

[26]

J. Zhao, L. Fu and J. Ruan, Extinction in a nonautonomous competitive Lotka-Volterra system,, Appl. Math. Letters, 22 (2009), 766.  doi: 10.1016/j.aml.2008.08.015.  Google Scholar

show all references

References:
[1]

S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra systems,, Proc. Amer. Math. Soc., 127 (1999), 2905.  doi: 10.1090/S0002-9939-99-05083-2.  Google Scholar

[2]

S. Ahmad, On the nonautonomous Volterra-Lotka competition equations,, Proc. Amer. Math. Soc., 117 (1993), 199.  doi: 10.1090/S0002-9939-1993-1143013-3.  Google Scholar

[3]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations,, J. Math. Anal. Appl., 127 (1987), 377.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[4]

A. Battauz and F. Zanolin, Coexistence states for periodic competitive Kolmogorov systems,, J. Math. Anal. Appl., 219 (1998), 179.  doi: 10.1006/jmaa.1997.5726.  Google Scholar

[5]

A. Bermand and R. Plemmons, Nonnegative Matrices in The Mathematical Sciences,, Classics in Applied Mathematics, (1979).   Google Scholar

[6]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.   Google Scholar

[7]

F. Chen, Z. Li and Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls,, Nonlinear Analysis: Real World Applications, 8 (2007), 680.  doi: 10.1016/j.nonrwa.2006.02.006.  Google Scholar

[8]

C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with diffusion,, SIAM J. Appl. Math., 44 (1984), 1112.  doi: 10.1137/0144080.  Google Scholar

[9]

L. Dung and H. L. Smith, Steady states of models of microbial growth and competition with chemotaxis,, J Math. Anal. Appl., 229 (1999), 295.  doi: 10.1006/jmaa.1998.6167.  Google Scholar

[10]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor,, Journal of Differential Equations, 130 (1996), 59.  doi: 10.1006/jdeq.1996.0132.  Google Scholar

[11]

C. Feng, On the existence and uniqueness of almost periodic solutions for delay Logistic equations,, Applied Mathematics and Computation, 136 (2003), 487.  doi: 10.1016/S0096-3003(02)00072-3.  Google Scholar

[12]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of population dynamics,, Mathematics and Its Applications, (1992).  doi: 10.1007/978-94-015-7920-9.  Google Scholar

[13]

J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied Mathematical Sciences, 99 (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[14]

X. He, Almost periodic solutions of a competition system with dominated infinite delays,, Tohoku Math. J., 50 (1998), 71.  doi: 10.2748/tmj/1178225015.  Google Scholar

[15]

Z. Hou, Permanence, global attraction and stability,, in Lotka-Volterra and Related Systems, (2013), 1.   Google Scholar

[16]

H. Hu, Z. Teng and S. Gao, Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls,, Nonlinear Analysis: Real World Applications, 10 (2009), 2508.  doi: 10.1016/j.nonrwa.2008.05.011.  Google Scholar

[17]

H. Hu, Z. Teng and H. Jiang, On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls,, Nonlinear Analysis: Real World Applications, 10 (2009), 1803.  doi: 10.1016/j.nonrwa.2008.02.017.  Google Scholar

[18]

F. Montes de Oca and L. Pérez, Extinction in nonautonomous competitive Lotka-Volterra systems with infinite delay,, Nonlinear Analysis: Theory, 75 (2012), 758.  doi: 10.1016/j.na.2011.09.009.  Google Scholar

[19]

F. Montes de Oca and M. Vivas, Extinction in a two dimensional Lotka-Volterra systems with infinite delay,, Nonlinear Analysis: Real World Applications, 7 (2006), 1042.  doi: 10.1016/j.nonrwa.2005.09.005.  Google Scholar

[20]

F. Montes de Oca and M. L. Zeeman, Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems,, J. Math. Anal. Appl., 192 (1995), 360.  doi: 10.1006/jmaa.1995.1177.  Google Scholar

[21]

C. Shi, Z. Li and F. Chen, Extinction in a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls,, Nonlinear Analysis: Real World Applications, 13 (2012), 2214.  doi: 10.1016/j.nonrwa.2012.01.016.  Google Scholar

[22]

Z. Teng, On the nonautonomous Lotka-Volerra N-species competing systems,, Appl. Math.Comp. 114 (2000), 114 (2000), 175.   Google Scholar

[23]

A. Tineo, On the asymptotic behaviour of some population models,, J. Math. Anal. Appl., 167 (1992), 516.  doi: 10.1016/0022-247X(92)90222-Y.  Google Scholar

[24]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems,, Results Math., 21 (1992), 224.  doi: 10.1007/BF03323081.  Google Scholar

[25]

J. Zhao and J. Tiang, Average conditions for permanence and extinction in nonautonomous Lotka-Voltera systems,, JMAA, 299 (2004), 663.  doi: 10.1016/j.jmaa.2004.06.019.  Google Scholar

[26]

J. Zhao, L. Fu and J. Ruan, Extinction in a nonautonomous competitive Lotka-Volterra system,, Appl. Math. Letters, 22 (2009), 766.  doi: 10.1016/j.aml.2008.08.015.  Google Scholar

[1]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[2]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[10]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[11]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[14]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[18]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]