October  2015, 20(8): 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

Coexistence solutions of a competition model with two species in a water column

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China

2. 

Department of Mathematics, National Tsing Hua University, National Center of Theoretical Science, Hsinchu 300

Received  October 2014 Revised  March 2015 Published  August 2015

Competition between species for resources is a fundamental ecological process, which can be modeled by the mathematical models in the chemostat culture or in the water column. The chemostat-type models for resource competition have been extensively analyzed. However, the study on the competition for resources in the water column has been relatively neglected as a result of some technical difficulties. We consider a resource competition model with two species in the water column. Firstly, the global existence and $L^\infty$ boundedness of solutions to the model are established by inequality estimates. Secondly, the uniqueness of positive steady state solutions and some dynamical behavior of the single population model are attained by degree theory and uniform persistence theory. Finally, the structure of the coexistence solutions of the two-species system is investigated by the global bifurcation theory.
Citation: Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691
References:
[1]

M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor,, SIAM J. Appl. Math., 59 (1999), 573.  doi: 10.1137/S0036139997325345.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics,, Vol. I, (1953).   Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[5]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[6]

Y. Du and L. F. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics,, Nonlinearity, 24 (2011), 319.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997).  doi: 10.1007/978-1-4615-6397-6.  Google Scholar

[8]

S. B. Hsu, Steady states of a system of partial differential equations modeling microbial ecology,, SIAM J. Math. Anal., 14 (1983), 1130.  doi: 10.1137/0514087.  Google Scholar

[9]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column,, SIAM J. Appl. Math., 70 (2010), 2942.  doi: 10.1137/100782358.  Google Scholar

[10]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[11]

J. López-Gómez and R. Parda, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case,, Differential Integral Equations, 6 (1993), 1025.   Google Scholar

[12]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[13]

J. P. Mellard, K. Yoshiyama, E. Litchman and C. A. Klausmeier, The vertical distribution of phytoplankton in stratified water columns,, J. Theoret. Biol., 269 (2011), 16.  doi: 10.1016/j.jtbi.2010.09.041.  Google Scholar

[14]

H. Nie and J. Wu, Multiplicity results for the unstirred chemostat model with general response functions,, Sci. China Math., 56 (2013), 2035.  doi: 10.1007/s11425-012-4550-4.  Google Scholar

[15]

H. Nie and J. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[16]

H. Nie and J. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[17]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[18]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).   Google Scholar

[21]

M. X. Wang, Nonlinear Elliptic Equations,, (in Chinese) Science Press, (2010).   Google Scholar

[22]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.  doi: 10.1137/S0036139903423285.  Google Scholar

[23]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[24]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

[25]

K. Yoshiyama and H. Nakajima, Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column,, J. Theoret. Biol., 216 (2002), 397.  doi: 10.1006/jtbi.2002.3007.  Google Scholar

[26]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column,, Am. Nat., 174 (2009), 190.  doi: 10.1086/600113.  Google Scholar

show all references

References:
[1]

M. Ballyk, L. Dung, D. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor,, SIAM J. Appl. Math., 59 (1999), 573.  doi: 10.1137/S0036139997325345.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics,, Vol. I, (1953).   Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Analysis, 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

E. N. Dancer, On the indices of fixed points of mappings in cones and applications,, J. Math. Anal. Appl., 91 (1983), 131.  doi: 10.1016/0022-247X(83)90098-7.  Google Scholar

[5]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[6]

Y. Du and L. F. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics,, Nonlinearity, 24 (2011), 319.  doi: 10.1088/0951-7715/24/1/016.  Google Scholar

[7]

J. P. Grover, Resource Competition,, Chapman and Hall, (1997).  doi: 10.1007/978-1-4615-6397-6.  Google Scholar

[8]

S. B. Hsu, Steady states of a system of partial differential equations modeling microbial ecology,, SIAM J. Math. Anal., 14 (1983), 1130.  doi: 10.1137/0514087.  Google Scholar

[9]

S. B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column,, SIAM J. Appl. Math., 70 (2010), 2942.  doi: 10.1137/100782358.  Google Scholar

[10]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[11]

J. López-Gómez and R. Parda, Existence and uniqueness of coexistence states for the predator-prey model with diffusion: The scalar case,, Differential Integral Equations, 6 (1993), 1025.   Google Scholar

[12]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[13]

J. P. Mellard, K. Yoshiyama, E. Litchman and C. A. Klausmeier, The vertical distribution of phytoplankton in stratified water columns,, J. Theoret. Biol., 269 (2011), 16.  doi: 10.1016/j.jtbi.2010.09.041.  Google Scholar

[14]

H. Nie and J. Wu, Multiplicity results for the unstirred chemostat model with general response functions,, Sci. China Math., 56 (2013), 2035.  doi: 10.1007/s11425-012-4550-4.  Google Scholar

[15]

H. Nie and J. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat,, J. Math. Anal. Appl., 355 (2009), 231.  doi: 10.1016/j.jmaa.2009.01.045.  Google Scholar

[16]

H. Nie and J. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model,, Appl. Anal., 89 (2010), 1141.  doi: 10.1080/00036811003717954.  Google Scholar

[17]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains,, J. Differential Equations, 246 (2009), 2788.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[18]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).   Google Scholar

[21]

M. X. Wang, Nonlinear Elliptic Equations,, (in Chinese) Science Press, (2010).   Google Scholar

[22]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.  doi: 10.1137/S0036139903423285.  Google Scholar

[23]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[24]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

[25]

K. Yoshiyama and H. Nakajima, Catastrophic transition in vertical distributions of phytoplankton: alternative equilibria in a water column,, J. Theoret. Biol., 216 (2002), 397.  doi: 10.1006/jtbi.2002.3007.  Google Scholar

[26]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column,, Am. Nat., 174 (2009), 190.  doi: 10.1086/600113.  Google Scholar

[1]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]