October  2015, 20(8): 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

Long time dynamics of a multidimensional nonlinear lattice with memory

1. 

Department of Mathematics, Federal University of Santa Catarina, Florianópolis, S.C. 88040-900, Brazil, Brazil

2. 

National Laboratory of Scientific Computation, CEP 25651-070, Petrópolis, RJ, Brazil

Received  November 2014 Revised  May 2015 Published  August 2015

This work is devoted to study the nature of vibrations arising in a multidimensional nonlinear periodic lattice structure with memory. We prove the existence of a global attractor. In the homogeneous case under a restriction on the nonlinear term we obtain decay rates of the total energy. These rates could be exponential, polynomial or several other intermediate types.
Citation: Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715
References:
[1]

A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems,, Comm. on Pure and Applied Analysis, 5 (2006), 55.  doi: 10.3934/cpaa.2006.5.55.  Google Scholar

[2]

W. L. Briggs and V. E. Henson, The DFT, an Owner's Manual for the Discrete Fourier Transform,, SIAM, (1995).   Google Scholar

[3]

T. Chen, S. Zhou and C. Zhao, Attractors for discrete nonlinear Schrödinger equation with delay,, Acta Mathematicae Appl. Sinica, 26 (2010), 633.  doi: 10.1007/s10255-007-7101-y.  Google Scholar

[4]

L. O. Chua and T. Roska, The CNN paradigma,, IEEE Trans. Circuits Systems, 40 (1993), 147.   Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985).   Google Scholar

[6]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete and Continuous Dynamical Systems, 31 (2011), 445.  doi: 10.3934/dcds.2011.31.445.  Google Scholar

[7]

R. Hirota and J. Satsuma, N-solution of nonlinear network equations describing a Volterra system,, J. Phys. Soc. Japan., 40 (1976), 891.  doi: 10.1143/JPSJ.40.891.  Google Scholar

[8]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, Journal of Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[9]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113.  doi: 10.1007/BF01192578.  Google Scholar

[10]

N. I. Karachalios and A. N. Yannacopoulos, The existence of a global attractor for the discrete nonlinear Schrödinger equation. II. Compacteness without tail estimates in $\mathbbZ^N, N\geq 1$, lattices,, Proc. Royal Soc. of Edinburgh, 137 (2007), 63.  doi: 10.1017/S0308210505000831.  Google Scholar

[11]

V. V. Konotop and G. Perla Menzala, Localized solutions of a nonlinear diatomic lattice,, Quarterly of Applied Mathematics, 63 (2005), 201.  doi: 10.1090/S0033-569X-05-00952-6.  Google Scholar

[12]

V. V. Konotop, J. M. Rivera and G. Perla Menzala, Uniform rates of decay of solutions for a nonlinear lattice with memory,, Asymptotic Analysis, 38 (2004), 167.   Google Scholar

[13]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal., 341 (2008), 1457.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[14]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, Nonlinear Analysis, 69 (2008), 2589.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[15]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping,, Journal of Difference Equations and Applications, 14 (2008), 899.  doi: 10.1080/10236190701859211.  Google Scholar

[16]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Large time behavior of multidimensional nonlinear lattices with nonlinear damping,, Communications in Applied Analysis, 14 (2010), 155.   Google Scholar

[17]

A. Perez-Muñuzuri, V. Perez-Mañuzuri, V. Perez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Systems, 40 (1993), 872.  doi: 10.1109/81.251828.  Google Scholar

[18]

R. Racke and C. Shang, Global attractors for nonlinear beam equations,, Proceedings of the Royal Society of Edinburgh, 142 (2012), 1087.  doi: 10.1017/S030821051000168X.  Google Scholar

[19]

M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory,, Journal of Mathematical Physics, 54 (2013).  doi: 10.1063/1.4792606.  Google Scholar

[20]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[21]

J. von Neumann, The general and logical theory of automata,, in Cerebral Mechanisms in Behavior (ed. L. A. Jeffress), (1951), 9.   Google Scholar

[22]

B. Wang, Dynamics of systems on infinite lattices,, Journal of Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[23]

Y. Yan, Attractors and dimensions for discretization of a weakly damped Schrodinger equation and a Sine-Gordon equation,, Nonlinear Analysis TMA, 20 (1993), 1417.  doi: 10.1016/0362-546X(93)90168-R.  Google Scholar

[24]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, Nonlinear stage of parametric wave excitation in a plasma,, Sov. Phys. JETP, 19 (1974), 151.   Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems,, Comm. on Pure and Applied Analysis, 5 (2006), 55.  doi: 10.3934/cpaa.2006.5.55.  Google Scholar

[2]

W. L. Briggs and V. E. Henson, The DFT, an Owner's Manual for the Discrete Fourier Transform,, SIAM, (1995).   Google Scholar

[3]

T. Chen, S. Zhou and C. Zhao, Attractors for discrete nonlinear Schrödinger equation with delay,, Acta Mathematicae Appl. Sinica, 26 (2010), 633.  doi: 10.1007/s10255-007-7101-y.  Google Scholar

[4]

L. O. Chua and T. Roska, The CNN paradigma,, IEEE Trans. Circuits Systems, 40 (1993), 147.   Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985).   Google Scholar

[6]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete and Continuous Dynamical Systems, 31 (2011), 445.  doi: 10.3934/dcds.2011.31.445.  Google Scholar

[7]

R. Hirota and J. Satsuma, N-solution of nonlinear network equations describing a Volterra system,, J. Phys. Soc. Japan., 40 (1976), 891.  doi: 10.1143/JPSJ.40.891.  Google Scholar

[8]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, Journal of Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[9]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113.  doi: 10.1007/BF01192578.  Google Scholar

[10]

N. I. Karachalios and A. N. Yannacopoulos, The existence of a global attractor for the discrete nonlinear Schrödinger equation. II. Compacteness without tail estimates in $\mathbbZ^N, N\geq 1$, lattices,, Proc. Royal Soc. of Edinburgh, 137 (2007), 63.  doi: 10.1017/S0308210505000831.  Google Scholar

[11]

V. V. Konotop and G. Perla Menzala, Localized solutions of a nonlinear diatomic lattice,, Quarterly of Applied Mathematics, 63 (2005), 201.  doi: 10.1090/S0033-569X-05-00952-6.  Google Scholar

[12]

V. V. Konotop, J. M. Rivera and G. Perla Menzala, Uniform rates of decay of solutions for a nonlinear lattice with memory,, Asymptotic Analysis, 38 (2004), 167.   Google Scholar

[13]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal., 341 (2008), 1457.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[14]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, Nonlinear Analysis, 69 (2008), 2589.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[15]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping,, Journal of Difference Equations and Applications, 14 (2008), 899.  doi: 10.1080/10236190701859211.  Google Scholar

[16]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Large time behavior of multidimensional nonlinear lattices with nonlinear damping,, Communications in Applied Analysis, 14 (2010), 155.   Google Scholar

[17]

A. Perez-Muñuzuri, V. Perez-Mañuzuri, V. Perez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Systems, 40 (1993), 872.  doi: 10.1109/81.251828.  Google Scholar

[18]

R. Racke and C. Shang, Global attractors for nonlinear beam equations,, Proceedings of the Royal Society of Edinburgh, 142 (2012), 1087.  doi: 10.1017/S030821051000168X.  Google Scholar

[19]

M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory,, Journal of Mathematical Physics, 54 (2013).  doi: 10.1063/1.4792606.  Google Scholar

[20]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[21]

J. von Neumann, The general and logical theory of automata,, in Cerebral Mechanisms in Behavior (ed. L. A. Jeffress), (1951), 9.   Google Scholar

[22]

B. Wang, Dynamics of systems on infinite lattices,, Journal of Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[23]

Y. Yan, Attractors and dimensions for discretization of a weakly damped Schrodinger equation and a Sine-Gordon equation,, Nonlinear Analysis TMA, 20 (1993), 1417.  doi: 10.1016/0362-546X(93)90168-R.  Google Scholar

[24]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, Nonlinear stage of parametric wave excitation in a plasma,, Sov. Phys. JETP, 19 (1974), 151.   Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[5]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

[Back to Top]