October  2015, 20(8): 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

Long time dynamics of a multidimensional nonlinear lattice with memory

1. 

Department of Mathematics, Federal University of Santa Catarina, Florianópolis, S.C. 88040-900, Brazil, Brazil

2. 

National Laboratory of Scientific Computation, CEP 25651-070, Petrópolis, RJ, Brazil

Received  November 2014 Revised  May 2015 Published  August 2015

This work is devoted to study the nature of vibrations arising in a multidimensional nonlinear periodic lattice structure with memory. We prove the existence of a global attractor. In the homogeneous case under a restriction on the nonlinear term we obtain decay rates of the total energy. These rates could be exponential, polynomial or several other intermediate types.
Citation: Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715
References:
[1]

A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems,, Comm. on Pure and Applied Analysis, 5 (2006), 55. doi: 10.3934/cpaa.2006.5.55. Google Scholar

[2]

W. L. Briggs and V. E. Henson, The DFT, an Owner's Manual for the Discrete Fourier Transform,, SIAM, (1995). Google Scholar

[3]

T. Chen, S. Zhou and C. Zhao, Attractors for discrete nonlinear Schrödinger equation with delay,, Acta Mathematicae Appl. Sinica, 26 (2010), 633. doi: 10.1007/s10255-007-7101-y. Google Scholar

[4]

L. O. Chua and T. Roska, The CNN paradigma,, IEEE Trans. Circuits Systems, 40 (1993), 147. Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985). Google Scholar

[6]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete and Continuous Dynamical Systems, 31 (2011), 445. doi: 10.3934/dcds.2011.31.445. Google Scholar

[7]

R. Hirota and J. Satsuma, N-solution of nonlinear network equations describing a Volterra system,, J. Phys. Soc. Japan., 40 (1976), 891. doi: 10.1143/JPSJ.40.891. Google Scholar

[8]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, Journal of Differential Equations, 217 (2005), 88. doi: 10.1016/j.jde.2005.06.002. Google Scholar

[9]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113. doi: 10.1007/BF01192578. Google Scholar

[10]

N. I. Karachalios and A. N. Yannacopoulos, The existence of a global attractor for the discrete nonlinear Schrödinger equation. II. Compacteness without tail estimates in $\mathbbZ^N, N\geq 1$, lattices,, Proc. Royal Soc. of Edinburgh, 137 (2007), 63. doi: 10.1017/S0308210505000831. Google Scholar

[11]

V. V. Konotop and G. Perla Menzala, Localized solutions of a nonlinear diatomic lattice,, Quarterly of Applied Mathematics, 63 (2005), 201. doi: 10.1090/S0033-569X-05-00952-6. Google Scholar

[12]

V. V. Konotop, J. M. Rivera and G. Perla Menzala, Uniform rates of decay of solutions for a nonlinear lattice with memory,, Asymptotic Analysis, 38 (2004), 167. Google Scholar

[13]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[14]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, Nonlinear Analysis, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[15]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping,, Journal of Difference Equations and Applications, 14 (2008), 899. doi: 10.1080/10236190701859211. Google Scholar

[16]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Large time behavior of multidimensional nonlinear lattices with nonlinear damping,, Communications in Applied Analysis, 14 (2010), 155. Google Scholar

[17]

A. Perez-Muñuzuri, V. Perez-Mañuzuri, V. Perez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Systems, 40 (1993), 872. doi: 10.1109/81.251828. Google Scholar

[18]

R. Racke and C. Shang, Global attractors for nonlinear beam equations,, Proceedings of the Royal Society of Edinburgh, 142 (2012), 1087. doi: 10.1017/S030821051000168X. Google Scholar

[19]

M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory,, Journal of Mathematical Physics, 54 (2013). doi: 10.1063/1.4792606. Google Scholar

[20]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[21]

J. von Neumann, The general and logical theory of automata,, in Cerebral Mechanisms in Behavior (ed. L. A. Jeffress), (1951), 9. Google Scholar

[22]

B. Wang, Dynamics of systems on infinite lattices,, Journal of Differential Equations, 221 (2006), 224. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[23]

Y. Yan, Attractors and dimensions for discretization of a weakly damped Schrodinger equation and a Sine-Gordon equation,, Nonlinear Analysis TMA, 20 (1993), 1417. doi: 10.1016/0362-546X(93)90168-R. Google Scholar

[24]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, Nonlinear stage of parametric wave excitation in a plasma,, Sov. Phys. JETP, 19 (1974), 151. Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342. doi: 10.1016/j.jde.2004.02.005. Google Scholar

[26]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172. doi: 10.1016/j.jde.2005.06.024. Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems,, Comm. on Pure and Applied Analysis, 5 (2006), 55. doi: 10.3934/cpaa.2006.5.55. Google Scholar

[2]

W. L. Briggs and V. E. Henson, The DFT, an Owner's Manual for the Discrete Fourier Transform,, SIAM, (1995). Google Scholar

[3]

T. Chen, S. Zhou and C. Zhao, Attractors for discrete nonlinear Schrödinger equation with delay,, Acta Mathematicae Appl. Sinica, 26 (2010), 633. doi: 10.1007/s10255-007-7101-y. Google Scholar

[4]

L. O. Chua and T. Roska, The CNN paradigma,, IEEE Trans. Circuits Systems, 40 (1993), 147. Google Scholar

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985). Google Scholar

[6]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete and Continuous Dynamical Systems, 31 (2011), 445. doi: 10.3934/dcds.2011.31.445. Google Scholar

[7]

R. Hirota and J. Satsuma, N-solution of nonlinear network equations describing a Volterra system,, J. Phys. Soc. Japan., 40 (1976), 891. doi: 10.1143/JPSJ.40.891. Google Scholar

[8]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, Journal of Differential Equations, 217 (2005), 88. doi: 10.1016/j.jde.2005.06.002. Google Scholar

[9]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113. doi: 10.1007/BF01192578. Google Scholar

[10]

N. I. Karachalios and A. N. Yannacopoulos, The existence of a global attractor for the discrete nonlinear Schrödinger equation. II. Compacteness without tail estimates in $\mathbbZ^N, N\geq 1$, lattices,, Proc. Royal Soc. of Edinburgh, 137 (2007), 63. doi: 10.1017/S0308210505000831. Google Scholar

[11]

V. V. Konotop and G. Perla Menzala, Localized solutions of a nonlinear diatomic lattice,, Quarterly of Applied Mathematics, 63 (2005), 201. doi: 10.1090/S0033-569X-05-00952-6. Google Scholar

[12]

V. V. Konotop, J. M. Rivera and G. Perla Menzala, Uniform rates of decay of solutions for a nonlinear lattice with memory,, Asymptotic Analysis, 38 (2004), 167. Google Scholar

[13]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[14]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, Nonlinear Analysis, 69 (2008), 2589. doi: 10.1016/j.na.2007.08.035. Google Scholar

[15]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Attractors for second order periodic lattices with nonlinear damping,, Journal of Difference Equations and Applications, 14 (2008), 899. doi: 10.1080/10236190701859211. Google Scholar

[16]

J. C. Oliveira, J. M. Pereira and G. Perla Menzala, Large time behavior of multidimensional nonlinear lattices with nonlinear damping,, Communications in Applied Analysis, 14 (2010), 155. Google Scholar

[17]

A. Perez-Muñuzuri, V. Perez-Mañuzuri, V. Perez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Systems, 40 (1993), 872. doi: 10.1109/81.251828. Google Scholar

[18]

R. Racke and C. Shang, Global attractors for nonlinear beam equations,, Proceedings of the Royal Society of Edinburgh, 142 (2012), 1087. doi: 10.1017/S030821051000168X. Google Scholar

[19]

M. A. J. Silva and T. F. Ma, Long-time dynamics for a class of Kirchhoff models with memory,, Journal of Mathematical Physics, 54 (2013). doi: 10.1063/1.4792606. Google Scholar

[20]

R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[21]

J. von Neumann, The general and logical theory of automata,, in Cerebral Mechanisms in Behavior (ed. L. A. Jeffress), (1951), 9. Google Scholar

[22]

B. Wang, Dynamics of systems on infinite lattices,, Journal of Differential Equations, 221 (2006), 224. doi: 10.1016/j.jde.2005.01.003. Google Scholar

[23]

Y. Yan, Attractors and dimensions for discretization of a weakly damped Schrodinger equation and a Sine-Gordon equation,, Nonlinear Analysis TMA, 20 (1993), 1417. doi: 10.1016/0362-546X(93)90168-R. Google Scholar

[24]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, Nonlinear stage of parametric wave excitation in a plasma,, Sov. Phys. JETP, 19 (1974), 151. Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342. doi: 10.1016/j.jde.2004.02.005. Google Scholar

[26]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172. doi: 10.1016/j.jde.2005.06.024. Google Scholar

[1]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[2]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[3]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[4]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[5]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[6]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[7]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Decay in chemotaxis systems with a logistic term. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 257-268. doi: 10.3934/dcdss.2020014

[8]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[9]

Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645

[10]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[11]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[12]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[13]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[14]

Xiaoying Han, Peter E. Kloeden, Basiru Usman. Long term behavior of a random Hopfield neural lattice model. Communications on Pure & Applied Analysis, 2019, 18 (2) : 809-824. doi: 10.3934/cpaa.2019039

[15]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[16]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[17]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020011

[18]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[19]

Zhong-Jie Han, Enrique Zuazua. Decay rates for $1-d$ heat-wave planar networks. Networks & Heterogeneous Media, 2016, 11 (4) : 655-692. doi: 10.3934/nhm.2016013

[20]

Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]