October  2015, 20(8): 2761-2763. doi: 10.3934/dcdsb.2015.20.2761

A note on 'Spin-polarized transport: Existence of weak solutions'

1. 

Mathematics Department, University of California, Santa Barbara, CA 93105, United States

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received  October 2014 Revised  February 2015 Published  August 2015

The authors presented a proof of existence of weak solutions to a model for spin-polarized transport in ferromagnetic multilayers in [1]. The proof of the previous result is valid only in the case when the external current in parallel to the boundary of the domain. We present here an extension of that result, which applies to more general currents.
Citation: Carlos J. García-Cervera, Xiao-Ping Wang. A note on 'Spin-polarized transport: Existence of weak solutions'. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2761-2763. doi: 10.3934/dcdsb.2015.20.2761
References:
[1]

C. J. García-Cervera and X. P. Wang, Spin-Polarized transport: Existence of weak solutions, Disc. Cont. Dyn. Sys., Series B, 7 (2007), 87-100. doi: 10.3934/dcdsb.2007.7.87.

show all references

References:
[1]

C. J. García-Cervera and X. P. Wang, Spin-Polarized transport: Existence of weak solutions, Disc. Cont. Dyn. Sys., Series B, 7 (2007), 87-100. doi: 10.3934/dcdsb.2007.7.87.

[1]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[2]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[3]

Wei Deng, Baisheng Yan. On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics. Evolution Equations and Control Theory, 2013, 2 (4) : 599-620. doi: 10.3934/eect.2013.2.599

[4]

Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure and Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[6]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[7]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[8]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[9]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[10]

Zonglin Jia, Youde Wang. Global weak solutions to Landau-Lifshtiz systems with spin-polarized transport. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1903-1935. doi: 10.3934/dcds.2020099

[11]

Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042

[12]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[13]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[14]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[15]

Yitong Pei, Fengxia Liu, Boling Guo, Wuming Liu. The periodic initial value problem for Landau–Lifshitz–Bloch–Maxwell systeme. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022168

[16]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic and Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[17]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[18]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[19]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[20]

Gilles Carbou, Pierre Fabrie, Olivier Guès. On the Ferromagnetism equations in the non static case. Communications on Pure and Applied Analysis, 2004, 3 (3) : 367-393. doi: 10.3934/cpaa.2004.3.367

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]