November  2015, 20(9): 2765-2791. doi: 10.3934/dcdsb.2015.20.2765

Age-structured and delay differential-difference model of hematopoietic stem cell dynamics

1. 

Inria, Université de Lyon, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex, France, France

2. 

Department of Mathematics, University Aboubekr Belkaid, Tlemcen, Algeria

Received  September 2014 Revised  June 2015 Published  September 2015

In this paper, we investigate a mathematical model of hematopoietic stem cell dynamics. We take two cell populations into account, quiescent and proliferating one, and we note the difference between dividing cells that enter directly to the quiescent phase and dividing cells that return to the proliferating phase to divide again. The resulting mathematical model is a system of two age-structured partial differential equations. By integrating this system over age and using the characteristics method, we reduce it to a delay differential-difference system, and we investigate the existence and stability of the steady states. We give sufficient conditions for boundedness and unboundedness properties for the solutions of this system. By constructing a Lyapunov function, the trivial steady state, describing cell's dying out, is proven to be globally asymptotically stable when it is the only equilibrium. The stability analysis of the unique positive steady state, the most biologically meaningful one, and the existence of a Hopf bifurcation allow the determination of a stability area, which is related to a delay-dependent characteristic equation. Numerical simulations illustrate our results on the asymptotic behavior of the steady states and show very rich dynamics of this model. This study may be helpful in understanding the uncontrolled proliferation of blood cells in some hematological disorders.
Citation: Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765
References:
[1]

M. Adimy, O. Angulo, C. Marquet and L. Sebaa, A mathematical model of multistage hematopoietic cell lineages,, Discrete and Continuous Dynamical Systems - Series B, 19 (2014), 1.  doi: 10.3934/dcdsb.2014.19.1.  Google Scholar

[2]

M. Adimy and F. Crauste, Global stability of a partial differential equation with distributed delay due to cellular replication,, Nonlinear Analysis: Theory, 54 (2003), 1469.  doi: 10.1016/S0362-546X(03)00197-4.  Google Scholar

[3]

M. Adimy and F. Crauste, Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 19.  doi: 10.3934/dcdsb.2007.8.19.  Google Scholar

[4]

M. Adimy, F. Crauste, H. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay,, SIAM Journal on Applied Mathematics, 70 (2010), 1611.  doi: 10.1137/080742713.  Google Scholar

[5]

M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia,, SIAM Journal on Applied Mathematics, 65 (2005), 1328.  doi: 10.1137/040604698.  Google Scholar

[6]

J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis,, Math Biosci, 128 (1995), 317.   Google Scholar

[7]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144.  doi: 10.1137/S0036141000376086.  Google Scholar

[8]

S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling,, Journal of Theoretical Biology, 223 (2003), 283.  doi: 10.1016/S0022-5193(03)00090-0.  Google Scholar

[9]

S. Bernard, J. Bélair and M. C. Mackey, Bifurcations in a white-blood-cell production model,, C. R. Biol., 327 (2004), 201.  doi: 10.1016/j.crvi.2003.05.005.  Google Scholar

[10]

F. J. Burns and I. F. Tannock, On the existence of a G$_0$-phase in the cell cycle,, Cell Proliferation, 3 (1970), 321.  doi: 10.1111/j.1365-2184.1970.tb00340.x.  Google Scholar

[11]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia,, Journal of Theoretical Biology, 237 (2005), 117.  doi: 10.1016/j.jtbi.2005.03.033.  Google Scholar

[12]

F. Ficara, M. J. Murphy, M. Lin and M. L. Cleary, Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence,, Cell Stem Cell, 2 (2008), 484.  doi: 10.1016/j.stem.2008.03.004.  Google Scholar

[13]

K. Gu and Y. Liu, Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations,, Automatica, 45 (2009), 798.  doi: 10.1016/j.automatica.2008.10.024.  Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer New York, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[15]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics,, Academic Press, (1993).   Google Scholar

[16]

J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia,, Journal of Theoretical Biology, 270 (2011), 143.  doi: 10.1016/j.jtbi.2010.11.024.  Google Scholar

[17]

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis.,, Blood, 51 (1978), 941.   Google Scholar

[18]

L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a $G_0$ model of hematopoietic stem cells,, SIAM J. Appl. Dyn. Syst., 4 (2005), 312.  doi: 10.1137/030600473.  Google Scholar

[19]

L. Pujo-Menjouet and M. C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia,, C. R. Biol., 327 (2004), 235.  doi: 10.1016/j.crvi.2003.05.004.  Google Scholar

[20]

H. Takizawa, R. R. Regoes, C. S. Boddupalli, S. Bonhoeffer and M. G. Manz, Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation,, J. Exp. Med., 208 (2011), 273.   Google Scholar

[21]

P. Vegh, J. Winckler and F. Melchers, Long-term "in vitro'' proliferating mouse hematopoietic progenitor cell lines,, Immunology Letters, 130 (2010), 32.  doi: 10.1016/j.imlet.2010.02.001.  Google Scholar

[22]

A. Wilson, E. Laurenti, G. Oser, R. C. van der Wath, W. Blanco-Bose, M. Jaworski, S. Offner, C. F. Dunant, L. Eshkind, E. Bockamp, P. Lió, H. R. MacDonald and A. Trumpp, Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair,, Cell, 135 (2008), 1118.   Google Scholar

show all references

References:
[1]

M. Adimy, O. Angulo, C. Marquet and L. Sebaa, A mathematical model of multistage hematopoietic cell lineages,, Discrete and Continuous Dynamical Systems - Series B, 19 (2014), 1.  doi: 10.3934/dcdsb.2014.19.1.  Google Scholar

[2]

M. Adimy and F. Crauste, Global stability of a partial differential equation with distributed delay due to cellular replication,, Nonlinear Analysis: Theory, 54 (2003), 1469.  doi: 10.1016/S0362-546X(03)00197-4.  Google Scholar

[3]

M. Adimy and F. Crauste, Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 19.  doi: 10.3934/dcdsb.2007.8.19.  Google Scholar

[4]

M. Adimy, F. Crauste, H. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay,, SIAM Journal on Applied Mathematics, 70 (2010), 1611.  doi: 10.1137/080742713.  Google Scholar

[5]

M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia,, SIAM Journal on Applied Mathematics, 65 (2005), 1328.  doi: 10.1137/040604698.  Google Scholar

[6]

J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis,, Math Biosci, 128 (1995), 317.   Google Scholar

[7]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters,, SIAM J. Math. Anal., 33 (2002), 1144.  doi: 10.1137/S0036141000376086.  Google Scholar

[8]

S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling,, Journal of Theoretical Biology, 223 (2003), 283.  doi: 10.1016/S0022-5193(03)00090-0.  Google Scholar

[9]

S. Bernard, J. Bélair and M. C. Mackey, Bifurcations in a white-blood-cell production model,, C. R. Biol., 327 (2004), 201.  doi: 10.1016/j.crvi.2003.05.005.  Google Scholar

[10]

F. J. Burns and I. F. Tannock, On the existence of a G$_0$-phase in the cell cycle,, Cell Proliferation, 3 (1970), 321.  doi: 10.1111/j.1365-2184.1970.tb00340.x.  Google Scholar

[11]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia,, Journal of Theoretical Biology, 237 (2005), 117.  doi: 10.1016/j.jtbi.2005.03.033.  Google Scholar

[12]

F. Ficara, M. J. Murphy, M. Lin and M. L. Cleary, Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence,, Cell Stem Cell, 2 (2008), 484.  doi: 10.1016/j.stem.2008.03.004.  Google Scholar

[13]

K. Gu and Y. Liu, Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations,, Automatica, 45 (2009), 798.  doi: 10.1016/j.automatica.2008.10.024.  Google Scholar

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer New York, (1993).  doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[15]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics,, Academic Press, (1993).   Google Scholar

[16]

J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia,, Journal of Theoretical Biology, 270 (2011), 143.  doi: 10.1016/j.jtbi.2010.11.024.  Google Scholar

[17]

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis.,, Blood, 51 (1978), 941.   Google Scholar

[18]

L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a $G_0$ model of hematopoietic stem cells,, SIAM J. Appl. Dyn. Syst., 4 (2005), 312.  doi: 10.1137/030600473.  Google Scholar

[19]

L. Pujo-Menjouet and M. C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia,, C. R. Biol., 327 (2004), 235.  doi: 10.1016/j.crvi.2003.05.004.  Google Scholar

[20]

H. Takizawa, R. R. Regoes, C. S. Boddupalli, S. Bonhoeffer and M. G. Manz, Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation,, J. Exp. Med., 208 (2011), 273.   Google Scholar

[21]

P. Vegh, J. Winckler and F. Melchers, Long-term "in vitro'' proliferating mouse hematopoietic progenitor cell lines,, Immunology Letters, 130 (2010), 32.  doi: 10.1016/j.imlet.2010.02.001.  Google Scholar

[22]

A. Wilson, E. Laurenti, G. Oser, R. C. van der Wath, W. Blanco-Bose, M. Jaworski, S. Offner, C. F. Dunant, L. Eshkind, E. Bockamp, P. Lió, H. R. MacDonald and A. Trumpp, Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair,, Cell, 135 (2008), 1118.   Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[15]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (12)

[Back to Top]