November  2015, 20(9): 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time

1. 

Centre de Mathématiques Appliquées, CNRS et Ecole Polytechnique, 91128 Palaiseau cedex, France

2. 

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

3. 

Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau cedex, France

Received  September 2014 Revised  March 2015 Published  November 2015

The aim of this paper is to perform a theoretical and numerical study on the dynamics of vortices in Bose-Einstein condensation in the case where the trapping potential varies randomly in time. We take a deterministic vortex solution as an initial condition for the stochastically fluctuated Gross-Pitaevskii equation, and we observe the influence of the stochastic perturbation on the evolution. We theoretically prove that up to times of the order of $\epsilon^{-2}$, the solution having the same symmetry properties as the vortex decomposes into the sum of a randomly modulated vortex solution and a small remainder, and we derive the equations for the modulation parameter. In addition, we show that the first order of the remainder, as $\epsilon$ goes to zero, converges to a Gaussian process. Finally, some numerical simulations on the dynamics of the vortex solution in the presence of noise are presented.
Citation: Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793
References:
[1]

F. Kh. Abdullaev, B. B. Baizakov and V. V. Konotop, Dynamics of a Bose-Einstein condensate in optical trap, in Nonlinearity and Disorder: Theory and Applications edited by F.Kh. Abdullaev, O. Bang and M.P. Soerensen, NATO Science Series, Kluwer Dodrecht, 45 (2001), 69-78. doi: 10.1007/978-94-010-0542-5_7.  Google Scholar

[2]

F. Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Soliton perturbations and the random Kepler problem, Physica D, 135 (2000), 369-386. doi: 10.1016/S0167-2789(99)00118-9.  Google Scholar

[3]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697. doi: 10.1137/S1064827503422956.  Google Scholar

[4]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation, Math. Models Methods Appl. Sci., 15 (2005), 1863-1896. doi: 10.1142/S021820250500100X.  Google Scholar

[5]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, 1983.  Google Scholar

[6]

C. C. Bradley, et al., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75 (1995), 1687-1691. doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, Providence, RI: American Mathematical Society/Courant Institute of Mathematical Sciences, 2003.  Google Scholar

[8]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM. J. Math. Anal., 39 (): 1070.  doi: 10.1137/050648389.  Google Scholar

[9]

K. B. Davis, et al., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3974. doi: 10.1109/EQEC.1996.561567.  Google Scholar

[10]

A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 251-278. doi: 10.1016/j.anihpc.2006.03.009.  Google Scholar

[11]

A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, Electron. J. Probab., 14 (2009), 1727-1744. doi: 10.1214/EJP.v14-683.  Google Scholar

[12]

A. de Bouard and R. Fukuizumi, Stochastic fluctuations in the Gross-Pitaevskii equation, Nonlinearity, 20 (2007), 2823-2844. doi: 10.1088/0951-7715/20/12/005.  Google Scholar

[13]

A. de Bouard and R. Fukuizumi, Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation, Asymptot. Anal., 63 (2009), 189-235.  Google Scholar

[14]

A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications, Nonlinearity, 25 (2012), 2993-3022. doi: 10.1088/0951-7715/25/11/2993.  Google Scholar

[15]

A. de Bouard and E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise, Discrete. Contin. Dyn. Syst., 26 (2010), 857-871. doi: 10.3934/dcds.2010.26.857.  Google Scholar

[16]

L. Di Menza, Numerical computation of solitons for optical systems, M2AN, Math. Model. Numer. Anal., 43 (2009), 173-208. doi: 10.1051/m2an:2008044.  Google Scholar

[17]

L. Di Menza and F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential,, preprint., ().   Google Scholar

[18]

G. Fibich and N. Gavish, Theory of singular vortex solutions of the nonlinear Schrödinger equation, Physica D., 237 (2008), 2696-2730. doi: 10.1016/j.physd.2008.04.018.  Google Scholar

[19]

M. E. Gehm, K. M. O'Hara, T. A. Savard and J. E. Thomas, Dynamics of noise-induced heating in atom traps, Phys. Rev. A, 58 (1998), 3914-3921. doi: 10.1103/PhysRevA.58.3914.  Google Scholar

[20]

J. Ginibre and G. Velo, On the global Cauchy problem for some non linear Schrödinger equations, Ann. Inst. Henri Poincaré. Anal. Non linéaire, 1 (1984), 309-323.  Google Scholar

[21]

J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions, J. Differential Equations, 119 (1995), 533-558. doi: 10.1006/jdeq.1995.1101.  Google Scholar

[22]

J. Fröhlich, S. Gustafson, B. L. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.  Google Scholar

[23]

B. L. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660. doi: 10.1007/s00023-006-0263-y.  Google Scholar

[24]

R. Kollár, Existence and Stability Of Vortex Solutions of Certain Nonlinear Schrödinger Equations, Ph.D. thesis, University of Maryland, College park, 2004.  Google Scholar

[25]

R. Kollár and R. L. Pego, Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature, Appl. Math. Res. Express. AMRX., 1 (2012), 1-46.  Google Scholar

[26]

M. Maeda, Symmetry Breaking and Stability of Standing Waves of Nonlinear Schrödinger Equations, Master thesis, Kyoto University, 2008. Google Scholar

[27]

T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Diff. Integral Equations, 18 (2005), 431-450.  Google Scholar

[28]

T. Mizumachi, Instability of vortex solitons for 2D focusing NLS, Adv. Diff. Equ., 12 (2007), 241-264.  Google Scholar

[29]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[30]

R. L. Pego and H. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations, J. Nonlinear. Sci., 12 (2002), 347-394. doi: 10.1007/s00332-002-0475-3.  Google Scholar

[31]

L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford Univ. Press, New York, 2003.  Google Scholar

[32]

M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear media, J. Opt. Soc. Am. B, 14 (1997), 2004-2009. doi: 10.1364/JOSAB.14.002004.  Google Scholar

[33]

M. Reed and B. Simon, Method of Modern Mathematical Physics, I,II,III,IV Academic Press, 1975.  Google Scholar

[34]

T. A. Savard, K. M. O'Hara and J. E. Thomas, Laser-noise induced heating in far-off resonance optical traps, Phys. Rev. A, 56 (1997), R1095-R1098. doi: 10.1103/PhysRevA.56.R1095.  Google Scholar

[35]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509. doi: 10.1007/s00220-002-0695-2.  Google Scholar

[36]

S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Phys. Scr., 81 (2010), 055006. doi: 10.1088/0031-8949/81/05/055006.  Google Scholar

[37]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, Second edition, Oxford at the Clarendon press, 1962.  Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034.  Google Scholar

show all references

References:
[1]

F. Kh. Abdullaev, B. B. Baizakov and V. V. Konotop, Dynamics of a Bose-Einstein condensate in optical trap, in Nonlinearity and Disorder: Theory and Applications edited by F.Kh. Abdullaev, O. Bang and M.P. Soerensen, NATO Science Series, Kluwer Dodrecht, 45 (2001), 69-78. doi: 10.1007/978-94-010-0542-5_7.  Google Scholar

[2]

F. Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Soliton perturbations and the random Kepler problem, Physica D, 135 (2000), 369-386. doi: 10.1016/S0167-2789(99)00118-9.  Google Scholar

[3]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697. doi: 10.1137/S1064827503422956.  Google Scholar

[4]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation, Math. Models Methods Appl. Sci., 15 (2005), 1863-1896. doi: 10.1142/S021820250500100X.  Google Scholar

[5]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, 1983.  Google Scholar

[6]

C. C. Bradley, et al., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75 (1995), 1687-1691. doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, Providence, RI: American Mathematical Society/Courant Institute of Mathematical Sciences, 2003.  Google Scholar

[8]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM. J. Math. Anal., 39 (): 1070.  doi: 10.1137/050648389.  Google Scholar

[9]

K. B. Davis, et al., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3974. doi: 10.1109/EQEC.1996.561567.  Google Scholar

[10]

A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 251-278. doi: 10.1016/j.anihpc.2006.03.009.  Google Scholar

[11]

A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, Electron. J. Probab., 14 (2009), 1727-1744. doi: 10.1214/EJP.v14-683.  Google Scholar

[12]

A. de Bouard and R. Fukuizumi, Stochastic fluctuations in the Gross-Pitaevskii equation, Nonlinearity, 20 (2007), 2823-2844. doi: 10.1088/0951-7715/20/12/005.  Google Scholar

[13]

A. de Bouard and R. Fukuizumi, Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation, Asymptot. Anal., 63 (2009), 189-235.  Google Scholar

[14]

A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications, Nonlinearity, 25 (2012), 2993-3022. doi: 10.1088/0951-7715/25/11/2993.  Google Scholar

[15]

A. de Bouard and E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise, Discrete. Contin. Dyn. Syst., 26 (2010), 857-871. doi: 10.3934/dcds.2010.26.857.  Google Scholar

[16]

L. Di Menza, Numerical computation of solitons for optical systems, M2AN, Math. Model. Numer. Anal., 43 (2009), 173-208. doi: 10.1051/m2an:2008044.  Google Scholar

[17]

L. Di Menza and F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential,, preprint., ().   Google Scholar

[18]

G. Fibich and N. Gavish, Theory of singular vortex solutions of the nonlinear Schrödinger equation, Physica D., 237 (2008), 2696-2730. doi: 10.1016/j.physd.2008.04.018.  Google Scholar

[19]

M. E. Gehm, K. M. O'Hara, T. A. Savard and J. E. Thomas, Dynamics of noise-induced heating in atom traps, Phys. Rev. A, 58 (1998), 3914-3921. doi: 10.1103/PhysRevA.58.3914.  Google Scholar

[20]

J. Ginibre and G. Velo, On the global Cauchy problem for some non linear Schrödinger equations, Ann. Inst. Henri Poincaré. Anal. Non linéaire, 1 (1984), 309-323.  Google Scholar

[21]

J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions, J. Differential Equations, 119 (1995), 533-558. doi: 10.1006/jdeq.1995.1101.  Google Scholar

[22]

J. Fröhlich, S. Gustafson, B. L. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642. doi: 10.1007/s00220-004-1128-1.  Google Scholar

[23]

B. L. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660. doi: 10.1007/s00023-006-0263-y.  Google Scholar

[24]

R. Kollár, Existence and Stability Of Vortex Solutions of Certain Nonlinear Schrödinger Equations, Ph.D. thesis, University of Maryland, College park, 2004.  Google Scholar

[25]

R. Kollár and R. L. Pego, Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature, Appl. Math. Res. Express. AMRX., 1 (2012), 1-46.  Google Scholar

[26]

M. Maeda, Symmetry Breaking and Stability of Standing Waves of Nonlinear Schrödinger Equations, Master thesis, Kyoto University, 2008. Google Scholar

[27]

T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Diff. Integral Equations, 18 (2005), 431-450.  Google Scholar

[28]

T. Mizumachi, Instability of vortex solitons for 2D focusing NLS, Adv. Diff. Equ., 12 (2007), 241-264.  Google Scholar

[29]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X.  Google Scholar

[30]

R. L. Pego and H. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations, J. Nonlinear. Sci., 12 (2002), 347-394. doi: 10.1007/s00332-002-0475-3.  Google Scholar

[31]

L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford Univ. Press, New York, 2003.  Google Scholar

[32]

M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear media, J. Opt. Soc. Am. B, 14 (1997), 2004-2009. doi: 10.1364/JOSAB.14.002004.  Google Scholar

[33]

M. Reed and B. Simon, Method of Modern Mathematical Physics, I,II,III,IV Academic Press, 1975.  Google Scholar

[34]

T. A. Savard, K. M. O'Hara and J. E. Thomas, Laser-noise induced heating in far-off resonance optical traps, Phys. Rev. A, 56 (1997), R1095-R1098. doi: 10.1103/PhysRevA.56.R1095.  Google Scholar

[35]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509. doi: 10.1007/s00220-002-0695-2.  Google Scholar

[36]

S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Phys. Scr., 81 (2010), 055006. doi: 10.1088/0031-8949/81/05/055006.  Google Scholar

[37]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, Second edition, Oxford at the Clarendon press, 1962.  Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491. doi: 10.1137/0516034.  Google Scholar

[1]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[2]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[3]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, , () : -. doi: 10.3934/era.2021047

[4]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2877-2891. doi: 10.3934/dcdss.2020456

[5]

Xiang Lv. Existence of unstable stationary solutions for nonlinear stochastic differential equations with additive white noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021133

[6]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[7]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[8]

Xiaobing Feng, Shu Ma. Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021071

[9]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[10]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[11]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[12]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[13]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[14]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[15]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[16]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[17]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021128

[18]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[19]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[20]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]