November  2015, 20(9): 2793-2817. doi: 10.3934/dcdsb.2015.20.2793

Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time

1. 

Centre de Mathématiques Appliquées, CNRS et Ecole Polytechnique, 91128 Palaiseau cedex, France

2. 

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

3. 

Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau cedex, France

Received  September 2014 Revised  March 2015 Published  November 2015

The aim of this paper is to perform a theoretical and numerical study on the dynamics of vortices in Bose-Einstein condensation in the case where the trapping potential varies randomly in time. We take a deterministic vortex solution as an initial condition for the stochastically fluctuated Gross-Pitaevskii equation, and we observe the influence of the stochastic perturbation on the evolution. We theoretically prove that up to times of the order of $\epsilon^{-2}$, the solution having the same symmetry properties as the vortex decomposes into the sum of a randomly modulated vortex solution and a small remainder, and we derive the equations for the modulation parameter. In addition, we show that the first order of the remainder, as $\epsilon$ goes to zero, converges to a Gaussian process. Finally, some numerical simulations on the dynamics of the vortex solution in the presence of noise are presented.
Citation: Anne de Bouard, Reika Fukuizumi, Romain Poncet. Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2793-2817. doi: 10.3934/dcdsb.2015.20.2793
References:
[1]

F. Kh. Abdullaev, B. B. Baizakov and V. V. Konotop, Dynamics of a Bose-Einstein condensate in optical trap,, in Nonlinearity and Disorder: Theory and Applications edited by F.Kh. Abdullaev, 45 (2001), 69. doi: 10.1007/978-94-010-0542-5_7. Google Scholar

[2]

F. Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Soliton perturbations and the random Kepler problem,, Physica D, 135 (2000), 369. doi: 10.1016/S0167-2789(99)00118-9. Google Scholar

[3]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674. doi: 10.1137/S1064827503422956. Google Scholar

[4]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863. doi: 10.1142/S021820250500100X. Google Scholar

[5]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation,, Kluwer Academic Publishers, (1983). Google Scholar

[6]

C. C. Bradley, et al., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,, Phys. Rev. Lett., 75 (1995), 1687. doi: 10.1103/PhysRevLett.75.1687. Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics 10, 10 (2003). Google Scholar

[8]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM. J. Math. Anal., 39 (): 1070. doi: 10.1137/050648389. Google Scholar

[9]

K. B. Davis, et al., Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1109/EQEC.1996.561567. Google Scholar

[10]

A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 251. doi: 10.1016/j.anihpc.2006.03.009. Google Scholar

[11]

A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise,, Electron. J. Probab., 14 (2009), 1727. doi: 10.1214/EJP.v14-683. Google Scholar

[12]

A. de Bouard and R. Fukuizumi, Stochastic fluctuations in the Gross-Pitaevskii equation,, Nonlinearity, 20 (2007), 2823. doi: 10.1088/0951-7715/20/12/005. Google Scholar

[13]

A. de Bouard and R. Fukuizumi, Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation,, Asymptot. Anal., 63 (2009), 189. Google Scholar

[14]

A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications,, Nonlinearity, 25 (2012), 2993. doi: 10.1088/0951-7715/25/11/2993. Google Scholar

[15]

A. de Bouard and E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise,, Discrete. Contin. Dyn. Syst., 26 (2010), 857. doi: 10.3934/dcds.2010.26.857. Google Scholar

[16]

L. Di Menza, Numerical computation of solitons for optical systems,, M2AN, 43 (2009), 173. doi: 10.1051/m2an:2008044. Google Scholar

[17]

L. Di Menza and F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential,, preprint., (). Google Scholar

[18]

G. Fibich and N. Gavish, Theory of singular vortex solutions of the nonlinear Schrödinger equation,, Physica D., 237 (2008), 2696. doi: 10.1016/j.physd.2008.04.018. Google Scholar

[19]

M. E. Gehm, K. M. O'Hara, T. A. Savard and J. E. Thomas, Dynamics of noise-induced heating in atom traps,, Phys. Rev. A, 58 (1998), 3914. doi: 10.1103/PhysRevA.58.3914. Google Scholar

[20]

J. Ginibre and G. Velo, On the global Cauchy problem for some non linear Schrödinger equations,, Ann. Inst. Henri Poincaré. Anal. Non linéaire, 1 (1984), 309. Google Scholar

[21]

J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions,, J. Differential Equations, 119 (1995), 533. doi: 10.1006/jdeq.1995.1101. Google Scholar

[22]

J. Fröhlich, S. Gustafson, B. L. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613. doi: 10.1007/s00220-004-1128-1. Google Scholar

[23]

B. L. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential,, Ann. Henri Poincaré, 7 (2006), 621. doi: 10.1007/s00023-006-0263-y. Google Scholar

[24]

R. Kollár, Existence and Stability Of Vortex Solutions of Certain Nonlinear Schrödinger Equations,, Ph.D. thesis, (2004). Google Scholar

[25]

R. Kollár and R. L. Pego, Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature,, Appl. Math. Res. Express. AMRX., 1 (2012), 1. Google Scholar

[26]

M. Maeda, Symmetry Breaking and Stability of Standing Waves of Nonlinear Schrödinger Equations,, Master thesis, (2008). Google Scholar

[27]

T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation,, Diff. Integral Equations, 18 (2005), 431. Google Scholar

[28]

T. Mizumachi, Instability of vortex solitons for 2D focusing NLS,, Adv. Diff. Equ., 12 (2007), 241. Google Scholar

[29]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255. doi: 10.1016/0022-0396(89)90123-X. Google Scholar

[30]

R. L. Pego and H. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations,, J. Nonlinear. Sci., 12 (2002), 347. doi: 10.1007/s00332-002-0475-3. Google Scholar

[31]

L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, Oxford Univ. Press, (2003). Google Scholar

[32]

M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear media,, J. Opt. Soc. Am. B, 14 (1997), 2004. doi: 10.1364/JOSAB.14.002004. Google Scholar

[33]

M. Reed and B. Simon, Method of Modern Mathematical Physics, I,II,III,IV, Academic Press, (1975). Google Scholar

[34]

T. A. Savard, K. M. O'Hara and J. E. Thomas, Laser-noise induced heating in far-off resonance optical traps,, Phys. Rev. A, 56 (1997). doi: 10.1103/PhysRevA.56.R1095. Google Scholar

[35]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Commun. Math. Phys., 229 (2002), 491. doi: 10.1007/s00220-002-0695-2. Google Scholar

[36]

S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians,, Phys. Scr., 81 (2010). doi: 10.1088/0031-8949/81/05/055006. Google Scholar

[37]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I,, Second edition, (1962). Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

show all references

References:
[1]

F. Kh. Abdullaev, B. B. Baizakov and V. V. Konotop, Dynamics of a Bose-Einstein condensate in optical trap,, in Nonlinearity and Disorder: Theory and Applications edited by F.Kh. Abdullaev, 45 (2001), 69. doi: 10.1007/978-94-010-0542-5_7. Google Scholar

[2]

F. Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Soliton perturbations and the random Kepler problem,, Physica D, 135 (2000), 369. doi: 10.1016/S0167-2789(99)00118-9. Google Scholar

[3]

W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow,, SIAM J. Sci. Comput., 25 (2004), 1674. doi: 10.1137/S1064827503422956. Google Scholar

[4]

W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation,, Math. Models Methods Appl. Sci., 15 (2005), 1863. doi: 10.1142/S021820250500100X. Google Scholar

[5]

F. A. Berezin and M. A. Shubin, The Schrödinger Equation,, Kluwer Academic Publishers, (1983). Google Scholar

[6]

C. C. Bradley, et al., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,, Phys. Rev. Lett., 75 (1995), 1687. doi: 10.1103/PhysRevLett.75.1687. Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics 10, 10 (2003). Google Scholar

[8]

S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves,, SIAM. J. Math. Anal., 39 (): 1070. doi: 10.1137/050648389. Google Scholar

[9]

K. B. Davis, et al., Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1109/EQEC.1996.561567. Google Scholar

[10]

A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 251. doi: 10.1016/j.anihpc.2006.03.009. Google Scholar

[11]

A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise,, Electron. J. Probab., 14 (2009), 1727. doi: 10.1214/EJP.v14-683. Google Scholar

[12]

A. de Bouard and R. Fukuizumi, Stochastic fluctuations in the Gross-Pitaevskii equation,, Nonlinearity, 20 (2007), 2823. doi: 10.1088/0951-7715/20/12/005. Google Scholar

[13]

A. de Bouard and R. Fukuizumi, Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation,, Asymptot. Anal., 63 (2009), 189. Google Scholar

[14]

A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications,, Nonlinearity, 25 (2012), 2993. doi: 10.1088/0951-7715/25/11/2993. Google Scholar

[15]

A. de Bouard and E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise,, Discrete. Contin. Dyn. Syst., 26 (2010), 857. doi: 10.3934/dcds.2010.26.857. Google Scholar

[16]

L. Di Menza, Numerical computation of solitons for optical systems,, M2AN, 43 (2009), 173. doi: 10.1051/m2an:2008044. Google Scholar

[17]

L. Di Menza and F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential,, preprint., (). Google Scholar

[18]

G. Fibich and N. Gavish, Theory of singular vortex solutions of the nonlinear Schrödinger equation,, Physica D., 237 (2008), 2696. doi: 10.1016/j.physd.2008.04.018. Google Scholar

[19]

M. E. Gehm, K. M. O'Hara, T. A. Savard and J. E. Thomas, Dynamics of noise-induced heating in atom traps,, Phys. Rev. A, 58 (1998), 3914. doi: 10.1103/PhysRevA.58.3914. Google Scholar

[20]

J. Ginibre and G. Velo, On the global Cauchy problem for some non linear Schrödinger equations,, Ann. Inst. Henri Poincaré. Anal. Non linéaire, 1 (1984), 309. Google Scholar

[21]

J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions,, J. Differential Equations, 119 (1995), 533. doi: 10.1006/jdeq.1995.1101. Google Scholar

[22]

J. Fröhlich, S. Gustafson, B. L. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Commun. Math. Phys., 250 (2004), 613. doi: 10.1007/s00220-004-1128-1. Google Scholar

[23]

B. L. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential,, Ann. Henri Poincaré, 7 (2006), 621. doi: 10.1007/s00023-006-0263-y. Google Scholar

[24]

R. Kollár, Existence and Stability Of Vortex Solutions of Certain Nonlinear Schrödinger Equations,, Ph.D. thesis, (2004). Google Scholar

[25]

R. Kollár and R. L. Pego, Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature,, Appl. Math. Res. Express. AMRX., 1 (2012), 1. Google Scholar

[26]

M. Maeda, Symmetry Breaking and Stability of Standing Waves of Nonlinear Schrödinger Equations,, Master thesis, (2008). Google Scholar

[27]

T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation,, Diff. Integral Equations, 18 (2005), 431. Google Scholar

[28]

T. Mizumachi, Instability of vortex solitons for 2D focusing NLS,, Adv. Diff. Equ., 12 (2007), 241. Google Scholar

[29]

Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials,, J. Differential Equations, 81 (1989), 255. doi: 10.1016/0022-0396(89)90123-X. Google Scholar

[30]

R. L. Pego and H. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations,, J. Nonlinear. Sci., 12 (2002), 347. doi: 10.1007/s00332-002-0475-3. Google Scholar

[31]

L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation,, Oxford Univ. Press, (2003). Google Scholar

[32]

M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear media,, J. Opt. Soc. Am. B, 14 (1997), 2004. doi: 10.1364/JOSAB.14.002004. Google Scholar

[33]

M. Reed and B. Simon, Method of Modern Mathematical Physics, I,II,III,IV, Academic Press, (1975). Google Scholar

[34]

T. A. Savard, K. M. O'Hara and J. E. Thomas, Laser-noise induced heating in far-off resonance optical traps,, Phys. Rev. A, 56 (1997). doi: 10.1103/PhysRevA.56.R1095. Google Scholar

[35]

R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas,, Commun. Math. Phys., 229 (2002), 491. doi: 10.1007/s00220-002-0695-2. Google Scholar

[36]

S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians,, Phys. Scr., 81 (2010). doi: 10.1088/0031-8949/81/05/055006. Google Scholar

[37]

E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I,, Second edition, (1962). Google Scholar

[38]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[1]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[2]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[3]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[4]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[5]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[6]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[7]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[8]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[9]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[10]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[11]

Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341-365. doi: 10.3934/cpaa.2016.15.341

[12]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[13]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[14]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[15]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[16]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[17]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[18]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[19]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[20]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]