\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Vortex solutions in Bose-Einstein condensation under a trapping potential varying randomly in time

Abstract Related Papers Cited by
  • The aim of this paper is to perform a theoretical and numerical study on the dynamics of vortices in Bose-Einstein condensation in the case where the trapping potential varies randomly in time. We take a deterministic vortex solution as an initial condition for the stochastically fluctuated Gross-Pitaevskii equation, and we observe the influence of the stochastic perturbation on the evolution. We theoretically prove that up to times of the order of $\epsilon^{-2}$, the solution having the same symmetry properties as the vortex decomposes into the sum of a randomly modulated vortex solution and a small remainder, and we derive the equations for the modulation parameter. In addition, we show that the first order of the remainder, as $\epsilon$ goes to zero, converges to a Gaussian process. Finally, some numerical simulations on the dynamics of the vortex solution in the presence of noise are presented.
    Mathematics Subject Classification: 35Q55, 60H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Kh. Abdullaev, B. B. Baizakov and V. V. Konotop, Dynamics of a Bose-Einstein condensate in optical trap, in Nonlinearity and Disorder: Theory and Applications edited by F.Kh. Abdullaev, O. Bang and M.P. Soerensen, NATO Science Series, Kluwer Dodrecht, 45 (2001), 69-78.doi: 10.1007/978-94-010-0542-5_7.

    [2]

    F. Kh. Abdullaev, J. C. Bronski and G. Papanicolaou, Soliton perturbations and the random Kepler problem, Physica D, 135 (2000), 369-386.doi: 10.1016/S0167-2789(99)00118-9.

    [3]

    W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.doi: 10.1137/S1064827503422956.

    [4]

    W. Bao and Y. Zhang, Dynamics of the ground state and central vortex states in Bose-Einstein condensation, Math. Models Methods Appl. Sci., 15 (2005), 1863-1896.doi: 10.1142/S021820250500100X.

    [5]

    F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers, 1983.

    [6]

    C. C. Bradley, et al., Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 75 (1995), 1687-1691.doi: 10.1103/PhysRevLett.75.1687.

    [7]

    T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, Providence, RI: American Mathematical Society/Courant Institute of Mathematical Sciences, 2003.

    [8]

    S.-M. Chang, S. Gustafson, K. Nakanishi and T.-P. Tsai, Spectra of linearized operators for NLS solitary waves, SIAM. J. Math. Anal., 39 (2007/08), 1070-1111. doi: 10.1137/050648389.

    [9]

    K. B. Davis, et al., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3974.doi: 10.1109/EQEC.1996.561567.

    [10]

    A. de Bouard and A. Debussche, Random modulation of solitons for the stochastic Korteweg-de Vries equation, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 251-278.doi: 10.1016/j.anihpc.2006.03.009.

    [11]

    A. de Bouard and A. Debussche, Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise, Electron. J. Probab., 14 (2009), 1727-1744.doi: 10.1214/EJP.v14-683.

    [12]

    A. de Bouard and R. Fukuizumi, Stochastic fluctuations in the Gross-Pitaevskii equation, Nonlinearity, 20 (2007), 2823-2844.doi: 10.1088/0951-7715/20/12/005.

    [13]

    A. de Bouard and R. Fukuizumi, Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation, Asymptot. Anal., 63 (2009), 189-235.

    [14]

    A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger evolution equations and applications, Nonlinearity, 25 (2012), 2993-3022.doi: 10.1088/0951-7715/25/11/2993.

    [15]

    A. de Bouard and E. Gautier, Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise, Discrete. Contin. Dyn. Syst., 26 (2010), 857-871.doi: 10.3934/dcds.2010.26.857.

    [16]

    L. Di Menza, Numerical computation of solitons for optical systems, M2AN, Math. Model. Numer. Anal., 43 (2009), 173-208.doi: 10.1051/m2an:2008044.

    [17]

    L. Di Menza and F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential, preprint.

    [18]

    G. Fibich and N. Gavish, Theory of singular vortex solutions of the nonlinear Schrödinger equation, Physica D., 237 (2008), 2696-2730.doi: 10.1016/j.physd.2008.04.018.

    [19]

    M. E. Gehm, K. M. O'Hara, T. A. Savard and J. E. Thomas, Dynamics of noise-induced heating in atom traps, Phys. Rev. A, 58 (1998), 3914-3921.doi: 10.1103/PhysRevA.58.3914.

    [20]

    J. Ginibre and G. Velo, On the global Cauchy problem for some non linear Schrödinger equations, Ann. Inst. Henri Poincaré. Anal. Non linéaire, 1 (1984), 309-323.

    [21]

    J. Iaia and H. Warchall, Nonradial solutions of semilinear elliptic equation in two dimensions, J. Differential Equations, 119 (1995), 533-558.doi: 10.1006/jdeq.1995.1101.

    [22]

    J. Fröhlich, S. Gustafson, B. L. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential, Commun. Math. Phys., 250 (2004), 613-642.doi: 10.1007/s00220-004-1128-1.

    [23]

    B. L. Jonsson, J. Fröhlich, S. Gustafson and I. M. Sigal, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7 (2006), 621-660.doi: 10.1007/s00023-006-0263-y.

    [24]

    R. Kollár, Existence and Stability Of Vortex Solutions of Certain Nonlinear Schrödinger Equations, Ph.D. thesis, University of Maryland, College park, 2004.

    [25]

    R. Kollár and R. L. Pego, Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature, Appl. Math. Res. Express. AMRX., 1 (2012), 1-46.

    [26]

    M. Maeda, Symmetry Breaking and Stability of Standing Waves of Nonlinear Schrödinger Equations, Master thesis, Kyoto University, 2008.

    [27]

    T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Diff. Integral Equations, 18 (2005), 431-450.

    [28]

    T. Mizumachi, Instability of vortex solitons for 2D focusing NLS, Adv. Diff. Equ., 12 (2007), 241-264.

    [29]

    Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274.doi: 10.1016/0022-0396(89)90123-X.

    [30]

    R. L. Pego and H. Warchall, Spectrally stable encapsulated vortices for nonlinear Schrödinger equations, J. Nonlinear. Sci., 12 (2002), 347-394.doi: 10.1007/s00332-002-0475-3.

    [31]

    L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford Univ. Press, New York, 2003.

    [32]

    M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear media, J. Opt. Soc. Am. B, 14 (1997), 2004-2009.doi: 10.1364/JOSAB.14.002004.

    [33]

    M. Reed and B. Simon, Method of Modern Mathematical Physics, I,II,III,IV Academic Press, 1975.

    [34]

    T. A. Savard, K. M. O'Hara and J. E. Thomas, Laser-noise induced heating in far-off resonance optical traps, Phys. Rev. A, 56 (1997), R1095-R1098.doi: 10.1103/PhysRevA.56.R1095.

    [35]

    R. Seiringer, Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509.doi: 10.1007/s00220-002-0695-2.

    [36]

    S. K. Suslov, Dynamical invariants for variable quadratic Hamiltonians, Phys. Scr., 81 (2010), 055006.doi: 10.1088/0031-8949/81/05/055006.

    [37]

    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, Second edition, Oxford at the Clarendon press, 1962.

    [38]

    M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.doi: 10.1137/0516034.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return