• Previous Article
    Kurzweil integral representation of interacting Prandtl-Ishlinskii operators
  • DCDS-B Home
  • This Issue
  • Next Article
    Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities
November  2015, 20(9): 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

Persistence-time estimation for some stochastic SIS epidemic models

1. 

Department of Applied Mathematics and Statistics and Operations Research, University of the Basque Country UPV/EHU, Spain, Spain

2. 

Department of Di erential Equations and Numerical Analysis, University of Sevilla, Spain

Received  July 2014 Revised  July 2015 Published  September 2015

In this paper, we study two stochastic SIS epidemic models: the first one with a constant population size, and the second one with a death factor. We analyze persistence and extinction behaviors for these models. The persistence time depends on the initial population size and satisfies a stationary backward Kolmogorov differential equation, which is a linear second-order partial differential equation with variable degenerate coefficients. We solve this equation numerically using a classical finite element method. We give computational evidence that the importance of understanding the dynamics of both the deterministic and the stochastic epidemic models is due to the numerical approximations to the mean persistence time. This can give more information about the model and may perhaps explain strange behaviors, such as the differences between the deterministic model and the stochastic one for long times.
Citation: Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933
References:
[1]

E. Allen, Modeling with Itô Stochastic Differential Equations,, Springer, (2007).   Google Scholar

[2]

E. Allen, L. Allen and H. Schurz, A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability,, Mathematical Biosciences, 196 (2005), 14.  doi: 10.1016/j.mbs.2005.03.010.  Google Scholar

[3]

L. Allen, An Introduction to Stochastic Processes with Applications to Biology,, Person Prentice Hall, (2003).   Google Scholar

[4]

L. Allen and E. Allen, A comparison of three different stochastic population models with regard to persistence time,, Theoretical Population Biology, 64 (2003), 439.  doi: 10.1016/S0040-5809(03)00104-7.  Google Scholar

[5]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Mathematical Biosciences, 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[6]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.   Google Scholar

[7]

E. Becker, G. Caray and J. Oden, Finite Elements. Vol. 1, 2, 3 and 4,, Prentice-Hall, (): 1981.   Google Scholar

[8]

P. Ciarlet and J. Lions, Handbook of Numerical Analysis Vol. II, Finite Element Methods,, North-Holland, (1991).   Google Scholar

[9]

F. de la Hoz and F. Vadillo, A mean extinction-time estimate for a stochastic Lotka-Volterra predator-prey model,, Applied Mathematics and Computation, 219 (2012), 170.  doi: 10.1016/j.amc.2012.05.060.  Google Scholar

[10]

C. Doering, K. Sargsyan and L. Sander, Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation,, Multiscale Model. Simul., 3 (2005), 283.  doi: 10.1137/030602800.  Google Scholar

[11]

M. Gockenbach, Understanding and Implementing the Finite Element Method,, SIAM, (2006).  doi: 10.1137/1.9780898717846.  Google Scholar

[12]

F. Hecht, New development in FreeFem++,, J. Numer. Math., 20 (2012), 251.   Google Scholar

[13]

D. Higham, X. Mao and A. Stuarts, Strong convergence of euler-type methods for nonlinear stochastic differential equations,, SIAM J. Numer. Anal., 40 (2002), 1041.  doi: 10.1137/S0036142901389530.  Google Scholar

[14]

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method,, Cambrigde University Press, (1987).   Google Scholar

[15]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of Mathematics, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[16]

R. Kryscio and C. Lefèvre, On the extinction of the S-I-S stochastic logistic epidemic,, J. Appl. Prob., 26 (1989), 685.  doi: 10.2307/3214374.  Google Scholar

[17]

M. Liu and K. Wanga, Persistence and extinction in stochastic non-autonomous logistic systems,, J. Math. Anal. Appl., 375 (2011), 443.  doi: 10.1016/j.jmaa.2010.09.058.  Google Scholar

[18]

J. Mena-Lorca and H. Hethcote, Dynamic models of infectious diseases as regulators of population sizes,, J. Math. Biol., 30 (1992), 693.  doi: 10.1007/BF00173264.  Google Scholar

[19]

I. Nåsell, Stochastic models of some endemic infections,, Mathematical Biosciences, 179 (2002), 1.  doi: 10.1016/S0025-5564(02)00098-6.  Google Scholar

[20]

R. Norden, On the distribution of the time to extinction in the stochastic logistic population model,, Adv. Appl. Prob., 14 (1982), 687.  doi: 10.2307/1427019.  Google Scholar

[21]

L. Trefethen, Spectral Methods in MATLAB,, SIAM, (2000).  doi: 10.1137/1.9780898719598.  Google Scholar

show all references

References:
[1]

E. Allen, Modeling with Itô Stochastic Differential Equations,, Springer, (2007).   Google Scholar

[2]

E. Allen, L. Allen and H. Schurz, A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability,, Mathematical Biosciences, 196 (2005), 14.  doi: 10.1016/j.mbs.2005.03.010.  Google Scholar

[3]

L. Allen, An Introduction to Stochastic Processes with Applications to Biology,, Person Prentice Hall, (2003).   Google Scholar

[4]

L. Allen and E. Allen, A comparison of three different stochastic population models with regard to persistence time,, Theoretical Population Biology, 64 (2003), 439.  doi: 10.1016/S0040-5809(03)00104-7.  Google Scholar

[5]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Mathematical Biosciences, 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[6]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Phys., 4 (2008), 729.   Google Scholar

[7]

E. Becker, G. Caray and J. Oden, Finite Elements. Vol. 1, 2, 3 and 4,, Prentice-Hall, (): 1981.   Google Scholar

[8]

P. Ciarlet and J. Lions, Handbook of Numerical Analysis Vol. II, Finite Element Methods,, North-Holland, (1991).   Google Scholar

[9]

F. de la Hoz and F. Vadillo, A mean extinction-time estimate for a stochastic Lotka-Volterra predator-prey model,, Applied Mathematics and Computation, 219 (2012), 170.  doi: 10.1016/j.amc.2012.05.060.  Google Scholar

[10]

C. Doering, K. Sargsyan and L. Sander, Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation,, Multiscale Model. Simul., 3 (2005), 283.  doi: 10.1137/030602800.  Google Scholar

[11]

M. Gockenbach, Understanding and Implementing the Finite Element Method,, SIAM, (2006).  doi: 10.1137/1.9780898717846.  Google Scholar

[12]

F. Hecht, New development in FreeFem++,, J. Numer. Math., 20 (2012), 251.   Google Scholar

[13]

D. Higham, X. Mao and A. Stuarts, Strong convergence of euler-type methods for nonlinear stochastic differential equations,, SIAM J. Numer. Anal., 40 (2002), 1041.  doi: 10.1137/S0036142901389530.  Google Scholar

[14]

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method,, Cambrigde University Press, (1987).   Google Scholar

[15]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of Mathematics, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[16]

R. Kryscio and C. Lefèvre, On the extinction of the S-I-S stochastic logistic epidemic,, J. Appl. Prob., 26 (1989), 685.  doi: 10.2307/3214374.  Google Scholar

[17]

M. Liu and K. Wanga, Persistence and extinction in stochastic non-autonomous logistic systems,, J. Math. Anal. Appl., 375 (2011), 443.  doi: 10.1016/j.jmaa.2010.09.058.  Google Scholar

[18]

J. Mena-Lorca and H. Hethcote, Dynamic models of infectious diseases as regulators of population sizes,, J. Math. Biol., 30 (1992), 693.  doi: 10.1007/BF00173264.  Google Scholar

[19]

I. Nåsell, Stochastic models of some endemic infections,, Mathematical Biosciences, 179 (2002), 1.  doi: 10.1016/S0025-5564(02)00098-6.  Google Scholar

[20]

R. Norden, On the distribution of the time to extinction in the stochastic logistic population model,, Adv. Appl. Prob., 14 (1982), 687.  doi: 10.2307/1427019.  Google Scholar

[21]

L. Trefethen, Spectral Methods in MATLAB,, SIAM, (2000).  doi: 10.1137/1.9780898719598.  Google Scholar

[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (2)

[Back to Top]