November  2015, 20(9): 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

Kurzweil integral representation of interacting Prandtl-Ishlinskii operators

1. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1

2. 

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030

3. 

MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland

4. 

Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75025, United States

Received  June 2014 Revised  July 2015 Published  September 2015

We consider a system of operator equations involving play and Prandtl-Ishlinskii hysteresis operators. This system generalizes the classical mechanical models of elastoplasticity, friction and fatigue by introducing coupling between the operators. We show that under quite general assumptions the coupled system is equivalent to one effective Prandtl-Ishlinskii operator or, more precisely, to a discontinuous extension of the Prandtl-Ishlinskii operator based on the Kurzweil integral of the derivative of the state function. This effective operator is described constructively in terms of the parameters of the coupled system. Our result is based on a substitution formula which we prove for the Kurzweil integral of regulated functions integrated with respect to functions of bounded variation. This formula allows us to prove the composition rule for the generalized (discontinuous) Prandtl-Ishlinskii operators. The composition rule, which underpins the analysis of the coupled model, then establishes that a composition of generalized Prandtl-Ishlinskii operators is also a generalized Prandtl-Ishlinskii operator provided that a monotonicity condition is satisfied.
Citation: Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949
References:
[1]

, The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti),, Elsevier, (2005). Google Scholar

[2]

F. Al-Bender, V. Lampaert and J. Swevers, The generalized Maxwell-slip model: A novel model for friction simulation and compensation,, IEEE Trans. Automat. Control, 50 (2005), 1883. doi: 10.1109/TAC.2005.858676. Google Scholar

[3]

G. Aumann, Reelle Funktionen,, (German) [Real Functions], (1954). Google Scholar

[4]

A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008). doi: 10.1017/CBO9780511791383. Google Scholar

[5]

G. Bertotti, V. Basso, M. LoBue and A. Magni, Thermodynamics, hysteresis, and micromagnetics,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), (2006), 1. doi: 10.1016/B978-012480874-4/50012-9. Google Scholar

[6]

M. Brokate, On the moving Preisach model,, Math. Methods Appl. Sci., 15 (1992), 145. doi: 10.1002/mma.1670150302. Google Scholar

[7]

M. Brokate, P. Krejčí and D. Rachinskii, Some analytical properties of the multidimensional continuous Mroz model of plasticity,, Control Cybernet, 27 (1998), 199. Google Scholar

[8]

M. Brokate, A. Pokrovskii and D. Rachinskii, Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis,, J. Math. Anal. Appl., 319 (2006), 94. doi: 10.1016/j.jmaa.2006.02.060. Google Scholar

[9]

M. Brokate, A. Pokrovskii, D. Rachinskii and O. Rasskazov, Differential equations with hysteresis via a canonical example,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), 1 (2006), 125. doi: 10.1016/B978-012480874-4/50005-1. Google Scholar

[10]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[11]

D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magneto-mechanical hysteresis through 'thermodynamic' compatibility,, Smart Mater. Struct., 22 (2013). doi: 10.1088/0964-1726/22/9/095009. Google Scholar

[12]

M. A. Janaideh, S. Rakheja and C.-Y. Su, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control,, IEEE/ASME Trans. Mechatronics, 16 (2011), 734. doi: 10.1109/TMECH.2010.2052366. Google Scholar

[13]

M. Krasnosel'skii and A. Pokrovskii, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[14]

A. Krasnosel'skii and D. Rachinskii, Bifurcation of forced periodic oscillations for equations with Preisach hysteresis,, J. Phys.: Conf. Ser., 22 (2005), 93. doi: 10.1088/1742-6596/22/1/006. Google Scholar

[15]

A. Krasnosel'skii and D. Rachinskii, On a bifurcation governed by hysteresis nonlinearity,, NoDEA Nonlinear Differ. Equ. Appl., 9 (2002), 93. doi: 10.1007/s00030-002-8120-2. Google Scholar

[16]

P. Krejčí, The Kurzweil integral with exclusion of negligible sets,, Math. Bohem., 128 (2003), 277. Google Scholar

[17]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996). Google Scholar

[18]

P. Krejčí and K. Kuhnen, Inverse control of systems with hysteresis and creep,, IEE P-Contr. Theor. Ap., 148 (2001), 185. Google Scholar

[19]

P. Krejčí and J. Kurzweil, A nonexistence result for the Kurzweil integral,, Math. Bohem., 127 (2002), 571. Google Scholar

[20]

P. Krejčí, H. Lamba, S. Melnik and D. Rachinskii, Analytical solution for a class of network dynamics with mechanical and financial applications,, Phys. Rev. E, 90 (2014). Google Scholar

[21]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159. Google Scholar

[22]

P. Krejčí, J. P. O'Kane, A. Pokrovskii and D. Rachinskii}, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator,, Phys. D, 241 (2012), 2010. doi: 10.1016/j.physd.2011.05.005. Google Scholar

[23]

P. Krejčí, J. P. O'Kane, A. Pokrovskii and D. Rachinskii, Stability results for a soil model with singular hysteretic hydrology,, J. Phys.: Conf. Ser. 268 (2011), 268 (2011). Google Scholar

[24]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach,, Eur. J. Control, 9 (2003), 407. doi: 10.3166/ejc.9.407-418. Google Scholar

[25]

J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter,, Czechoslovak Math. J., 7 (1957), 418. Google Scholar

[26]

Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials,, Cambridge University Press, (1990). Google Scholar

[27]

I. Mayergoyz, Mathematical Models of Hysteresis and Their Applications,, Elsevier, (2003). Google Scholar

[28]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, (German) [A model for kinetic theory of solid bodies], 8 (1928), 85. Google Scholar

[29]

Š. Schwabik, On a modified sum integral of Stieltjes type,, Časopis Pěst. Mat., 98 (1973), 274. Google Scholar

[30]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral,, Časopis Pêst. Mat., 114 (1989), 187. Google Scholar

[31]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

show all references

References:
[1]

, The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti),, Elsevier, (2005). Google Scholar

[2]

F. Al-Bender, V. Lampaert and J. Swevers, The generalized Maxwell-slip model: A novel model for friction simulation and compensation,, IEEE Trans. Automat. Control, 50 (2005), 1883. doi: 10.1109/TAC.2005.858676. Google Scholar

[3]

G. Aumann, Reelle Funktionen,, (German) [Real Functions], (1954). Google Scholar

[4]

A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks,, Cambridge University Press, (2008). doi: 10.1017/CBO9780511791383. Google Scholar

[5]

G. Bertotti, V. Basso, M. LoBue and A. Magni, Thermodynamics, hysteresis, and micromagnetics,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), (2006), 1. doi: 10.1016/B978-012480874-4/50012-9. Google Scholar

[6]

M. Brokate, On the moving Preisach model,, Math. Methods Appl. Sci., 15 (1992), 145. doi: 10.1002/mma.1670150302. Google Scholar

[7]

M. Brokate, P. Krejčí and D. Rachinskii, Some analytical properties of the multidimensional continuous Mroz model of plasticity,, Control Cybernet, 27 (1998), 199. Google Scholar

[8]

M. Brokate, A. Pokrovskii and D. Rachinskii, Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis,, J. Math. Anal. Appl., 319 (2006), 94. doi: 10.1016/j.jmaa.2006.02.060. Google Scholar

[9]

M. Brokate, A. Pokrovskii, D. Rachinskii and O. Rasskazov, Differential equations with hysteresis via a canonical example,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), 1 (2006), 125. doi: 10.1016/B978-012480874-4/50005-1. Google Scholar

[10]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Springer, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[11]

D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magneto-mechanical hysteresis through 'thermodynamic' compatibility,, Smart Mater. Struct., 22 (2013). doi: 10.1088/0964-1726/22/9/095009. Google Scholar

[12]

M. A. Janaideh, S. Rakheja and C.-Y. Su, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control,, IEEE/ASME Trans. Mechatronics, 16 (2011), 734. doi: 10.1109/TMECH.2010.2052366. Google Scholar

[13]

M. Krasnosel'skii and A. Pokrovskii, Systems with Hysteresis,, Springer, (1989). doi: 10.1007/978-3-642-61302-9. Google Scholar

[14]

A. Krasnosel'skii and D. Rachinskii, Bifurcation of forced periodic oscillations for equations with Preisach hysteresis,, J. Phys.: Conf. Ser., 22 (2005), 93. doi: 10.1088/1742-6596/22/1/006. Google Scholar

[15]

A. Krasnosel'skii and D. Rachinskii, On a bifurcation governed by hysteresis nonlinearity,, NoDEA Nonlinear Differ. Equ. Appl., 9 (2002), 93. doi: 10.1007/s00030-002-8120-2. Google Scholar

[16]

P. Krejčí, The Kurzweil integral with exclusion of negligible sets,, Math. Bohem., 128 (2003), 277. Google Scholar

[17]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations,, Gakkōtosho, (1996). Google Scholar

[18]

P. Krejčí and K. Kuhnen, Inverse control of systems with hysteresis and creep,, IEE P-Contr. Theor. Ap., 148 (2001), 185. Google Scholar

[19]

P. Krejčí and J. Kurzweil, A nonexistence result for the Kurzweil integral,, Math. Bohem., 127 (2002), 571. Google Scholar

[20]

P. Krejčí, H. Lamba, S. Melnik and D. Rachinskii, Analytical solution for a class of network dynamics with mechanical and financial applications,, Phys. Rev. E, 90 (2014). Google Scholar

[21]

P. Krejčí and Ph. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159. Google Scholar

[22]

P. Krejčí, J. P. O'Kane, A. Pokrovskii and D. Rachinskii}, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator,, Phys. D, 241 (2012), 2010. doi: 10.1016/j.physd.2011.05.005. Google Scholar

[23]

P. Krejčí, J. P. O'Kane, A. Pokrovskii and D. Rachinskii, Stability results for a soil model with singular hysteretic hydrology,, J. Phys.: Conf. Ser. 268 (2011), 268 (2011). Google Scholar

[24]

K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach,, Eur. J. Control, 9 (2003), 407. doi: 10.3166/ejc.9.407-418. Google Scholar

[25]

J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter,, Czechoslovak Math. J., 7 (1957), 418. Google Scholar

[26]

Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials,, Cambridge University Press, (1990). Google Scholar

[27]

I. Mayergoyz, Mathematical Models of Hysteresis and Their Applications,, Elsevier, (2003). Google Scholar

[28]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, (German) [A model for kinetic theory of solid bodies], 8 (1928), 85. Google Scholar

[29]

Š. Schwabik, On a modified sum integral of Stieltjes type,, Časopis Pěst. Mat., 98 (1973), 274. Google Scholar

[30]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral,, Časopis Pêst. Mat., 114 (1989), 187. Google Scholar

[31]

A. Visintin, Differential Models of Hysteresis,, Springer, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[1]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[2]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[3]

Pavel Krejčí, Jürgen Sprekels. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 283-292. doi: 10.3934/dcdss.2008.1.283

[4]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[5]

Jacek Banasiak, Aleksandra Puchalska. Generalized network transport and Euler-Hille formula. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1873-1893. doi: 10.3934/dcdsb.2018185

[6]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[7]

Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967

[8]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[9]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[10]

Peter Seibt. A period formula for torus automorphisms. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029

[11]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[12]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[13]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[14]

Adriano Festa, Simone Göttlich, Marion Pfirsching. A model for a network of conveyor belts with discontinuous speed and capacity. Networks & Heterogeneous Media, 2019, 14 (2) : 389-410. doi: 10.3934/nhm.2019016

[15]

Igor Rivin and Jean-Marc Schlenker. The Schlafli formula in Einstein manifolds with boundary. Electronic Research Announcements, 1999, 5: 18-23.

[16]

Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063

[17]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[18]

Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009

[19]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[20]

Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]