\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise

Abstract Related Papers Cited by
  • In this paper, we have proposed and analyzed a perturbed eco-epidemiological model with Holling type II functional response by white noise. By Lyapunov analysis methods, we prove the stochastic stability, its long time behavior around the equilibrium of deterministic eco-epidemiological model and the stochastic asymptotic stability. Numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.
    Mathematics Subject Classification: Primary: 92B05, 93E15, 60H10; Secondary: 34E10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Berettaa, V. Kolmanovskiib and L. Shaikhetc, Stability of epidemic model with time delays influenced by stochastic perturbations, Math Comput Simulat, 45 (1998), 269-277.doi: 10.1016/S0378-4754(97)00106-7.

    [2]

    J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766.doi: 10.1016/S0362-546X(98)00126-6.

    [3]

    J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological study, Ecol. Model., 136 (2001), 103-112.

    [4]

    J. Chattopadhyay, P. D. N. Srinivasu and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological model II, Ecol. Model., 167 (2003), 199-211.doi: 10.1016/S0304-3800(03)00187-X.

    [5]

    J. Chattopadhyay, P. K. Roy and N. Bairagi, Role of infection on the stability of a predator-prey system with several response functions - A comparative study, Journal of Theoretical Biology., 248 (2007), 10-25.doi: 10.1016/j.jtbi.2007.05.005.

    [6]

    D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.doi: 10.1137/S0036144500378302.

    [7]

    H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.doi: 10.1016/j.tpb.2004.06.010.

    [8]

    K. P. Hadeler and H. I. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631.doi: 10.1007/BF00276947.

    [9]

    C. Y. Ji, D. Q. Jiang and N. Z. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390 (2011), 1747-1762.doi: 10.1016/j.automatica.2011.09.044.

    [10]

    C. Y. Ji, D. Q. Jiang, Q. S. Yang and N. Z. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.doi: 10.1016/j.automatica.2011.09.044.

    [11]

    C. Y. Ji and D. Q. Jiang, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun Nonlinear Sci Numer Simulat., 17 (2012), 2501-2516.doi: 10.1016/j.cnsns.2011.07.025.

    [12]

    C. Y. Ji and D. Q. Jiang, Analysis of a predator-prey model with disease in the prey, Int. J. Biomath., 6 (2013), 1350012, 21 pp.doi: 10.1142/S1793524513500125.

    [13]

    X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems A, 24 (2009), 523-545.doi: 10.3934/dcds.2009.24.523.

    [14]

    X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.doi: 10.1533/9780857099402.

    [15]

    E. Venturino, Epidemics in predator-prey models: Disease in the prey, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of EpidemicsWuerz, 1, Winnipeg, Canada, 1995, 381-393.

    [16]

    E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol., 19 (2002), 185-205.doi: 10.1093/imammb19.3.185.

    [17]

    Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.doi: 10.1016/S0025-5564(01)00049-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return