• Previous Article
    An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip
  • DCDS-B Home
  • This Issue
  • Next Article
    Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line
November  2015, 20(9): 3013-3027. doi: 10.3934/dcdsb.2015.20.3013

Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation

1. 

1-Université de Toulouse; UPS, INSA, UT1, UTM, 2-CNRS, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France

Received  July 2014 Revised  May 2015 Published  September 2015

This paper is devoted to study the existence of solutions of hydrodynamic model for systems of self-propelled particles subject to alignment and volume exclusion interactions. On one hand, we prove the existence of solutions by using the modified Garlerkin method for quasi-linear parabolic simulations. On the other hand, we also perform simulations to compare theoretical and numerical results. The numerical results show that the numerical solutions exist for short time in some cases of coefficients.
Citation: Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013
References:
[1]

A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249.  doi: 10.3934/dcdsb.2014.19.1249.  Google Scholar

[2]

A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.011920.  Google Scholar

[3]

E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/44/445001.  Google Scholar

[4]

A. Cziròk and T. Vicsek, Collective behavior of interacting self-propelled particles,, Physica A, 281 (2000), 17.  doi: 10.1016/S0378-4371(00)00013-3.  Google Scholar

[5]

P. Degond, G. Dimarco , T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion,, Communications in Mathematical Sciences, 13 (2015), 1615.  doi: 10.4310/CMS.2015.v13.n6.a12.  Google Scholar

[6]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427.  doi: 10.1007/s00332-012-9157-y.  Google Scholar

[7]

P. Degond, A. Frouvelle, J.-G. Liu, S. Motsch and L. Navoret, Macroscopic models of collective motion and self-organization,, Séminaire Laurent Schwartz — EDP et applications, (): 2012.  doi: 10.5802/slsedp.32.  Google Scholar

[8]

P. Degond, A. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics,, Archive for Rational Mechanics and Analysis, 216 (2015), 63.  doi: 10.1007/s00205-014-0800-7.  Google Scholar

[9]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Math. Models Methods Appl. Sci., 18 (2008), 1193.  doi: 10.1142/S0218202508003005.  Google Scholar

[10]

P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[11]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Mod. Meth. Appl. Sci., 22 (2012).  doi: 10.1142/S021820251250011X.  Google Scholar

[12]

A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math. Anal., 44 (2012), 791.  doi: 10.1137/110823912.  Google Scholar

[13]

S. Henkes, Y. Fily and M. C. Marchetti, Active jamming: Self-propelled soft particles at high density,, Phys. Rev. E, 84 (2011).  doi: 10.1103/PhysRevE.84.040301.  Google Scholar

[14]

S. Motsch and L. Navoret, Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Model. Simul., 9 (2011), 1253.  doi: 10.1137/100794067.  Google Scholar

[15]

F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.030904.  Google Scholar

[16]

V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self propelling particles with kinematic constraints: the relations between the discrete and the continuous description,, Phys. A, 381 (2007), 39.  doi: 10.1016/j.physa.2007.03.045.  Google Scholar

[17]

M. E. Taylor, Partial Differential Equations III,, Second edition. Applied Mathematical Sciences, (2011).  doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[18]

Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819.  doi: 10.1103/PhysRevLett.80.4819.  Google Scholar

[19]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249.  doi: 10.3934/dcdsb.2014.19.1249.  Google Scholar

[2]

A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.011920.  Google Scholar

[3]

E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/44/445001.  Google Scholar

[4]

A. Cziròk and T. Vicsek, Collective behavior of interacting self-propelled particles,, Physica A, 281 (2000), 17.  doi: 10.1016/S0378-4371(00)00013-3.  Google Scholar

[5]

P. Degond, G. Dimarco , T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion,, Communications in Mathematical Sciences, 13 (2015), 1615.  doi: 10.4310/CMS.2015.v13.n6.a12.  Google Scholar

[6]

P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427.  doi: 10.1007/s00332-012-9157-y.  Google Scholar

[7]

P. Degond, A. Frouvelle, J.-G. Liu, S. Motsch and L. Navoret, Macroscopic models of collective motion and self-organization,, Séminaire Laurent Schwartz — EDP et applications, (): 2012.  doi: 10.5802/slsedp.32.  Google Scholar

[8]

P. Degond, A. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics,, Archive for Rational Mechanics and Analysis, 216 (2015), 63.  doi: 10.1007/s00205-014-0800-7.  Google Scholar

[9]

P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Math. Models Methods Appl. Sci., 18 (2008), 1193.  doi: 10.1142/S0218202508003005.  Google Scholar

[10]

P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89.  doi: 10.4310/MAA.2013.v20.n2.a1.  Google Scholar

[11]

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Mod. Meth. Appl. Sci., 22 (2012).  doi: 10.1142/S021820251250011X.  Google Scholar

[12]

A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math. Anal., 44 (2012), 791.  doi: 10.1137/110823912.  Google Scholar

[13]

S. Henkes, Y. Fily and M. C. Marchetti, Active jamming: Self-propelled soft particles at high density,, Phys. Rev. E, 84 (2011).  doi: 10.1103/PhysRevE.84.040301.  Google Scholar

[14]

S. Motsch and L. Navoret, Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Model. Simul., 9 (2011), 1253.  doi: 10.1137/100794067.  Google Scholar

[15]

F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.030904.  Google Scholar

[16]

V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self propelling particles with kinematic constraints: the relations between the discrete and the continuous description,, Phys. A, 381 (2007), 39.  doi: 10.1016/j.physa.2007.03.045.  Google Scholar

[17]

M. E. Taylor, Partial Differential Equations III,, Second edition. Applied Mathematical Sciences, (2011).  doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[18]

Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819.  doi: 10.1103/PhysRevLett.80.4819.  Google Scholar

[19]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[6]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[7]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[9]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[12]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[15]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[16]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[17]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[18]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]