-
Previous Article
An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip
- DCDS-B Home
- This Issue
-
Next Article
Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line
Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation
1. | 1-Université de Toulouse; UPS, INSA, UT1, UTM, 2-CNRS, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France |
References:
[1] |
A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249.
doi: 10.3934/dcdsb.2014.19.1249. |
[2] |
A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods,, Phys. Rev. E, 77 (2008).
doi: 10.1103/PhysRevE.77.011920. |
[3] |
E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009).
doi: 10.1088/1751-8113/42/44/445001. |
[4] |
A. Cziròk and T. Vicsek, Collective behavior of interacting self-propelled particles,, Physica A, 281 (2000), 17.
doi: 10.1016/S0378-4371(00)00013-3. |
[5] |
P. Degond, G. Dimarco , T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion,, Communications in Mathematical Sciences, 13 (2015), 1615.
doi: 10.4310/CMS.2015.v13.n6.a12. |
[6] |
P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427.
doi: 10.1007/s00332-012-9157-y. |
[7] |
P. Degond, A. Frouvelle, J.-G. Liu, S. Motsch and L. Navoret, Macroscopic models of collective motion and self-organization,, Séminaire Laurent Schwartz — EDP et applications, (): 2012.
doi: 10.5802/slsedp.32. |
[8] |
P. Degond, A. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics,, Archive for Rational Mechanics and Analysis, 216 (2015), 63.
doi: 10.1007/s00205-014-0800-7. |
[9] |
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Math. Models Methods Appl. Sci., 18 (2008), 1193.
doi: 10.1142/S0218202508003005. |
[10] |
P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89.
doi: 10.4310/MAA.2013.v20.n2.a1. |
[11] |
A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Mod. Meth. Appl. Sci., 22 (2012).
doi: 10.1142/S021820251250011X. |
[12] |
A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math. Anal., 44 (2012), 791.
doi: 10.1137/110823912. |
[13] |
S. Henkes, Y. Fily and M. C. Marchetti, Active jamming: Self-propelled soft particles at high density,, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.040301. |
[14] |
S. Motsch and L. Navoret, Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Model. Simul., 9 (2011), 1253.
doi: 10.1137/100794067. |
[15] |
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods,, Phys. Rev. E, 74 (2006).
doi: 10.1103/PhysRevE.74.030904. |
[16] |
V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self propelling particles with kinematic constraints: the relations between the discrete and the continuous description,, Phys. A, 381 (2007), 39.
doi: 10.1016/j.physa.2007.03.045. |
[17] |
M. E. Taylor, Partial Differential Equations III,, Second edition. Applied Mathematical Sciences, (2011).
doi: 10.1007/978-1-4419-7049-7. |
[18] |
Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819.
doi: 10.1103/PhysRevLett.80.4819. |
[19] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
show all references
References:
[1] |
A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents,, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249.
doi: 10.3934/dcdsb.2014.19.1249. |
[2] |
A. Baskaran and M. C. Marchetti, Hydrodynamics of self-propelled hard rods,, Phys. Rev. E, 77 (2008).
doi: 10.1103/PhysRevE.77.011920. |
[3] |
E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis,, J. Phys. A: Math. Theor., 42 (2009).
doi: 10.1088/1751-8113/42/44/445001. |
[4] |
A. Cziròk and T. Vicsek, Collective behavior of interacting self-propelled particles,, Physica A, 281 (2000), 17.
doi: 10.1016/S0378-4371(00)00013-3. |
[5] |
P. Degond, G. Dimarco , T. B. N. Mac and N. Wang, Macroscopic models of collective motion with repulsion,, Communications in Mathematical Sciences, 13 (2015), 1615.
doi: 10.4310/CMS.2015.v13.n6.a12. |
[6] |
P. Degond, A. Frouvelle and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles,, J. Nonlinear Sci., 23 (2013), 427.
doi: 10.1007/s00332-012-9157-y. |
[7] |
P. Degond, A. Frouvelle, J.-G. Liu, S. Motsch and L. Navoret, Macroscopic models of collective motion and self-organization,, Séminaire Laurent Schwartz — EDP et applications, (): 2012.
doi: 10.5802/slsedp.32. |
[8] |
P. Degond, A. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics,, Archive for Rational Mechanics and Analysis, 216 (2015), 63.
doi: 10.1007/s00205-014-0800-7. |
[9] |
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction,, Math. Models Methods Appl. Sci., 18 (2008), 1193.
doi: 10.1142/S0218202508003005. |
[10] |
P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory,, Methods Appl. Anal., 20 (2013), 89.
doi: 10.4310/MAA.2013.v20.n2.a1. |
[11] |
A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters,, Math. Mod. Meth. Appl. Sci., 22 (2012).
doi: 10.1142/S021820251250011X. |
[12] |
A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,, SIAM J. Math. Anal., 44 (2012), 791.
doi: 10.1137/110823912. |
[13] |
S. Henkes, Y. Fily and M. C. Marchetti, Active jamming: Self-propelled soft particles at high density,, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.040301. |
[14] |
S. Motsch and L. Navoret, Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior,, Multiscale Model. Simul., 9 (2011), 1253.
doi: 10.1137/100794067. |
[15] |
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of self-propelled rods,, Phys. Rev. E, 74 (2006).
doi: 10.1103/PhysRevE.74.030904. |
[16] |
V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii and A. V. Zvelindovsky, Collective behavior of self propelling particles with kinematic constraints: the relations between the discrete and the continuous description,, Phys. A, 381 (2007), 39.
doi: 10.1016/j.physa.2007.03.045. |
[17] |
M. E. Taylor, Partial Differential Equations III,, Second edition. Applied Mathematical Sciences, (2011).
doi: 10.1007/978-1-4419-7049-7. |
[18] |
Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks,, Phys. Rev. Lett., 80 (1998), 4819.
doi: 10.1103/PhysRevLett.80.4819. |
[19] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
[1] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[2] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[3] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[4] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[5] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[6] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[7] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[8] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[9] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[10] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[11] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[12] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[13] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[14] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[15] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[16] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[17] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[18] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[19] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[20] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]