• Previous Article
    Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation
November  2015, 20(9): 3029-3055. doi: 10.3934/dcdsb.2015.20.3029

An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip

1. 

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria, Austria

2. 

Institute for Analysis and Scienti c Computing, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria

Received  November 2014 Revised  July 2015 Published  September 2015

We study the asymptotic behavior for a system consisting of a clamped flexible beam that carries a tip payload, which is attached to a nonlinear damper and a nonlinear spring at its end. Characterizing the $\omega$-limit sets of the trajectories, we give a sufficient condition under which the system is asymptotically stable. In the case when this condition is not satisfied, we show that the beam deflection approaches a non-decaying time-periodic solution.
Citation: Maja Miletić, Dominik Stürzer, Anton Arnold. An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the tip. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3029-3055. doi: 10.3934/dcdsb.2015.20.3029
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976, Translated from the Romanian.  Google Scholar

[3]

G. K. Batchelor, An Introduction to Fluid Dynamics, Second paperback edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1999.  Google Scholar

[4]

M. Boudaoud, Y. Haddab and Y. Le Gorrec, Modeling and optimal force control of a nonlinear electrostatic microgripper, Mechatronics, IEEE/ASME Transactions on, 18 (2013), 1130-1139. doi: 10.1109/TMECH.2012.2197216.  Google Scholar

[5]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998.  Google Scholar

[6]

B. Chentouf and J.-F. Couchouron, Nonlinear feedback stabilization of a rotating body-beam without damping, ESAIM: Control, Optimisation and Calculus of Variations, 4 (1999), 515-535. doi: 10.1051/cocv:1999120.  Google Scholar

[7]

I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differential Equations, 198 (2004), 196-231. doi: 10.1016/j.jde.2003.08.008.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 233 (2007), 42-86. doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183pp. doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[12]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups in supersonic flow-plate interactions, J. Differential Equations, 254 (2013), 1741-1773. doi: 10.1016/j.jde.2012.11.009.  Google Scholar

[13]

F. Conrad and M. Pierre, Stabilization of Euler-Bernoulli Beam by Nonlinear Boundary Feedback, Research Report RR-1235, 1990. http://hal.inria.fr/inria-00075324. Google Scholar

[14]

F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 485-515.  Google Scholar

[15]

J.-M. Coron and B. d'Andrea Novel, Stabilization of a rotating body beam without damping, Automatic Control, IEEE Transactions on, 43 (1998), 608-618. doi: 10.1109/9.668828.  Google Scholar

[16]

J.-F. Couchouron, Compactness theorems for abstract evolution problems, Journal of Evolution Equations, 2 (2002), 151-175. doi: 10.1007/s00028-002-8084-z.  Google Scholar

[17]

M. G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418. doi: 10.1016/0022-1236(69)90032-9.  Google Scholar

[18]

C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Functional Analysis, 13 (1973), 97-106. doi: 10.1016/0022-1236(73)90069-4.  Google Scholar

[19]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.  Google Scholar

[20]

S. S. Ge, S. Zhang and W. He, Modeling and control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance, in American Control Conference (ACC), 2011, IEEE, 2011, 2988-2993. Google Scholar

[21]

P. Grabowski, The motion planning problem and exponential stabilisation of a heavy chain. part i, International Journal of Control, 82 (2009), 1539-1563. doi: 10.1080/00207170802588188.  Google Scholar

[22]

B.-Z. Guo and J.-M. Wang, Riesz basis generation of abstract second-order partial differential equation systems with general non-separated boundary conditions, Numerical Functional Analysis and Optimization, 27 (2006), 291-328. doi: 10.1080/01630560600657265.  Google Scholar

[23]

B. Guo, On the boundary control of a hybrid system with variable coefficients, Journal of Optimization Theory and Applications, 114 (2002), 373-395. doi: 10.1023/A:1016039819069.  Google Scholar

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[25]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.  Google Scholar

[26]

A. Kugi and D. Thull, Infinite-dimensional decoupling control of the tip position and the tip angle of a composite piezoelectric beam with tip mass, in Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, vol. 322 of Lecture Notes in Control and Information Science, Springer Berlin Heidelberg, 2005, 351-368. doi: 10.1007/11529798_22.  Google Scholar

[27]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura Appl. (4), 152 (1988), 281-330. doi: 10.1007/BF01766154.  Google Scholar

[28]

Z.-H. Luo, B.-Z. Guo and Ö. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering Series, Springer-Verlag London Ltd., London, 1999. doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[29]

M. Miletić and A. Arnold, A piezoelectric Euler-Bernoulli beam with dynamic boundary control: Stability and dissipative FEM, Acta Applicandae Mathematicae, 138 (2015), 241-277. doi: 10.1007/s10440-014-9965-1.  Google Scholar

[30]

M. Miletić, D. Stürzer, A. Arnold and A. Kugi, Stability of an Euler-Bernoulli beam with a nonlinear dynamic feedback system, Preprint, 2015, arXiv:1505.07576. Google Scholar

[31]

Ö. Morgül, Stabilization and disturbance rejection for the beam equation, IEEE Transactions on Automatic Control, 46 (2001), 1913-1918. doi: 10.1109/9.975475.  Google Scholar

[32]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.  Google Scholar

[33]

A. Pazy, A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. doi: 10.1007/BF02756753.  Google Scholar

[34]

A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math., 40 (1981), 239-262 (1982). doi: 10.1007/BF02790164.  Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.  Google Scholar

[37]

D. Stürzer, Asymptitic Stability of an Euler-Bernoulli Beam Coupled to Nonlinear Controllers, PhD thesis, Vienna University of Technology, To appear in 2015. Google Scholar

[38]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[39]

H. R. Thieme and I. I. Vrabie, Relatively compact orbits and compact attractors for a class of nonlinear evolution equations, J. Dynam. Differential Equations, 15 (2003), 731-750. doi: 10.1023/B:JODY.0000010063.69213.7c.  Google Scholar

[40]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems, IEEE Transactions on Automatic Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.  Google Scholar

[41]

G. F. Webb, Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 19-33. doi: 10.1017/S0308210500016930.  Google Scholar

[42]

K. Yosida, Functional Analysis, Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976, Translated from the Romanian.  Google Scholar

[3]

G. K. Batchelor, An Introduction to Fluid Dynamics, Second paperback edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1999.  Google Scholar

[4]

M. Boudaoud, Y. Haddab and Y. Le Gorrec, Modeling and optimal force control of a nonlinear electrostatic microgripper, Mechatronics, IEEE/ASME Transactions on, 18 (2013), 1130-1139. doi: 10.1109/TMECH.2012.2197216.  Google Scholar

[5]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998.  Google Scholar

[6]

B. Chentouf and J.-F. Couchouron, Nonlinear feedback stabilization of a rotating body-beam without damping, ESAIM: Control, Optimisation and Calculus of Variations, 4 (1999), 515-535. doi: 10.1051/cocv:1999120.  Google Scholar

[7]

I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951. doi: 10.1081/PDE-120016132.  Google Scholar

[8]

I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differential Equations, 198 (2004), 196-231. doi: 10.1016/j.jde.2003.08.008.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J. Differential Equations, 233 (2007), 42-86. doi: 10.1016/j.jde.2006.09.019.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183pp. doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[12]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups in supersonic flow-plate interactions, J. Differential Equations, 254 (2013), 1741-1773. doi: 10.1016/j.jde.2012.11.009.  Google Scholar

[13]

F. Conrad and M. Pierre, Stabilization of Euler-Bernoulli Beam by Nonlinear Boundary Feedback, Research Report RR-1235, 1990. http://hal.inria.fr/inria-00075324. Google Scholar

[14]

F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 485-515.  Google Scholar

[15]

J.-M. Coron and B. d'Andrea Novel, Stabilization of a rotating body beam without damping, Automatic Control, IEEE Transactions on, 43 (1998), 608-618. doi: 10.1109/9.668828.  Google Scholar

[16]

J.-F. Couchouron, Compactness theorems for abstract evolution problems, Journal of Evolution Equations, 2 (2002), 151-175. doi: 10.1007/s00028-002-8084-z.  Google Scholar

[17]

M. G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418. doi: 10.1016/0022-1236(69)90032-9.  Google Scholar

[18]

C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Functional Analysis, 13 (1973), 97-106. doi: 10.1016/0022-1236(73)90069-4.  Google Scholar

[19]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.  Google Scholar

[20]

S. S. Ge, S. Zhang and W. He, Modeling and control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance, in American Control Conference (ACC), 2011, IEEE, 2011, 2988-2993. Google Scholar

[21]

P. Grabowski, The motion planning problem and exponential stabilisation of a heavy chain. part i, International Journal of Control, 82 (2009), 1539-1563. doi: 10.1080/00207170802588188.  Google Scholar

[22]

B.-Z. Guo and J.-M. Wang, Riesz basis generation of abstract second-order partial differential equation systems with general non-separated boundary conditions, Numerical Functional Analysis and Optimization, 27 (2006), 291-328. doi: 10.1080/01630560600657265.  Google Scholar

[23]

B. Guo, On the boundary control of a hybrid system with variable coefficients, Journal of Optimization Theory and Applications, 114 (2002), 373-395. doi: 10.1023/A:1016039819069.  Google Scholar

[24]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[25]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.  Google Scholar

[26]

A. Kugi and D. Thull, Infinite-dimensional decoupling control of the tip position and the tip angle of a composite piezoelectric beam with tip mass, in Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, vol. 322 of Lecture Notes in Control and Information Science, Springer Berlin Heidelberg, 2005, 351-368. doi: 10.1007/11529798_22.  Google Scholar

[27]

W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura Appl. (4), 152 (1988), 281-330. doi: 10.1007/BF01766154.  Google Scholar

[28]

Z.-H. Luo, B.-Z. Guo and Ö. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering Series, Springer-Verlag London Ltd., London, 1999. doi: 10.1007/978-1-4471-0419-3.  Google Scholar

[29]

M. Miletić and A. Arnold, A piezoelectric Euler-Bernoulli beam with dynamic boundary control: Stability and dissipative FEM, Acta Applicandae Mathematicae, 138 (2015), 241-277. doi: 10.1007/s10440-014-9965-1.  Google Scholar

[30]

M. Miletić, D. Stürzer, A. Arnold and A. Kugi, Stability of an Euler-Bernoulli beam with a nonlinear dynamic feedback system, Preprint, 2015, arXiv:1505.07576. Google Scholar

[31]

Ö. Morgül, Stabilization and disturbance rejection for the beam equation, IEEE Transactions on Automatic Control, 46 (2001), 1913-1918. doi: 10.1109/9.975475.  Google Scholar

[32]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.  Google Scholar

[33]

A. Pazy, A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. doi: 10.1007/BF02756753.  Google Scholar

[34]

A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math., 40 (1981), 239-262 (1982). doi: 10.1007/BF02790164.  Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.  Google Scholar

[37]

D. Stürzer, Asymptitic Stability of an Euler-Bernoulli Beam Coupled to Nonlinear Controllers, PhD thesis, Vienna University of Technology, To appear in 2015. Google Scholar

[38]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[39]

H. R. Thieme and I. I. Vrabie, Relatively compact orbits and compact attractors for a class of nonlinear evolution equations, J. Dynam. Differential Equations, 15 (2003), 731-750. doi: 10.1023/B:JODY.0000010063.69213.7c.  Google Scholar

[40]

J. A. Villegas, H. Zwart, Y. Le Gorrec and B. Maschke, Exponential stability of a class of boundary control systems, IEEE Transactions on Automatic Control, 54 (2009), 142-147. doi: 10.1109/TAC.2008.2007176.  Google Scholar

[41]

G. F. Webb, Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 19-33. doi: 10.1017/S0308210500016930.  Google Scholar

[42]

K. Yosida, Functional Analysis, Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.  Google Scholar

[1]

Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021230

[2]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[3]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[4]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[5]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[6]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[7]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[8]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[9]

K. T. Andrews, M. F. M'Bengue, Meir Shillor. Vibrations of a nonlinear dynamic beam between two stops. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 23-38. doi: 10.3934/dcdsb.2009.12.23

[10]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[13]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[14]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[15]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6253-6265. doi: 10.3934/dcdsb.2021017

[16]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[17]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[18]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[19]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[20]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]