• Previous Article
    Quantitative analysis of time delays of glucose - insulin dynamics using artificial pancreas
  • DCDS-B Home
  • This Issue
  • Next Article
    Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection
November  2015, 20(9): 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

Lyapunov functionals for virus-immune models with infinite delay

1. 

Graduate School of Environmental Science, Okayama University, Okayama, 700-8530, Japan

2. 

Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530

3. 

Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan

Received  October 2014 Revised  April 2015 Published  September 2015

We present a systematic method to construct Lyapunov functionals of delay differential equation models of infectious diseases in vivo. For generality we construct Lyapunov functionals of models with infinitely distributed delay. We begin with simpler models without delay and construct Lyapunov functionals for the complex models progressively. We construct those functionals using our result obtained previously instead of constructing each functional independently. Additionally we discuss some problems that arise from the mathematical requirements caused by the infinitely distributed delay.
Citation: Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093
References:
[1]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331.   Google Scholar

[2]

T. Burton and V. Hutson, Repellers in systems with infinite delay,, J. Math. Anal. Appl., 137 (1989), 240.  doi: 10.1016/0022-247X(89)90287-4.  Google Scholar

[3]

H. Gomez-Acevedo , M. Y. Li and S. Jacobson, Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention,, Bull. Math. Biol., 72 (2010), 681.  doi: 10.1007/s11538-009-9465-z.  Google Scholar

[4]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.   Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[6]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.  doi: 10.1137/050643271.  Google Scholar

[7]

T. Inoue, T. Kajiwara and T. Sasaki, Global stability of models of humoral immunity against multiple viral strains,, J. Biol. Dyn., 4 (2010), 282.  doi: 10.1080/17513750903180275.  Google Scholar

[8]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis RWA, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[9]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functions of the models for infectious diseases in vivo: from simple models to complex models,, Math. Biosci. Eng., 12 (2015), 117.   Google Scholar

[10]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[11]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603.  doi: 10.3934/mbe.2009.6.603.  Google Scholar

[12]

A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics,, J. Math. Biol., 51 (2005), 247.  doi: 10.1007/s00285-005-0321-y.  Google Scholar

[13]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

H. R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows,, Proceedings of the American Mathematical Society, 127 (1999), 2395.  doi: 10.1090/S0002-9939-99-05034-0.  Google Scholar

[16]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Mathematical Medicine and Biology, 29 (2012), 283.  doi: 10.1093/imammb/dqr009.  Google Scholar

show all references

References:
[1]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331.   Google Scholar

[2]

T. Burton and V. Hutson, Repellers in systems with infinite delay,, J. Math. Anal. Appl., 137 (1989), 240.  doi: 10.1016/0022-247X(89)90287-4.  Google Scholar

[3]

H. Gomez-Acevedo , M. Y. Li and S. Jacobson, Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention,, Bull. Math. Biol., 72 (2010), 681.  doi: 10.1007/s11538-009-9465-z.  Google Scholar

[4]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.   Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[6]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.  doi: 10.1137/050643271.  Google Scholar

[7]

T. Inoue, T. Kajiwara and T. Sasaki, Global stability of models of humoral immunity against multiple viral strains,, J. Biol. Dyn., 4 (2010), 282.  doi: 10.1080/17513750903180275.  Google Scholar

[8]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology,, Nonlinear Analysis RWA, 13 (2012), 1802.  doi: 10.1016/j.nonrwa.2011.12.011.  Google Scholar

[9]

T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functions of the models for infectious diseases in vivo: from simple models to complex models,, Math. Biosci. Eng., 12 (2015), 117.   Google Scholar

[10]

A. Korobeinikov, Global properties of basic virus dynamics models,, Bull. Math. Biol., 66 (2004), 879.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[11]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603.  doi: 10.3934/mbe.2009.6.603.  Google Scholar

[12]

A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics,, J. Math. Biol., 51 (2005), 247.  doi: 10.1007/s00285-005-0321-y.  Google Scholar

[13]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

H. R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows,, Proceedings of the American Mathematical Society, 127 (1999), 2395.  doi: 10.1090/S0002-9939-99-05034-0.  Google Scholar

[16]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Mathematical Medicine and Biology, 29 (2012), 283.  doi: 10.1093/imammb/dqr009.  Google Scholar

[1]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[2]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[3]

Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401

[4]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[5]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[6]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[7]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[8]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[9]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[10]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[11]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[12]

Lianwen Wang, Zhijun Liu, Yong Li, Dashun Xu. Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019196

[13]

Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020015

[14]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[15]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[16]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[17]

Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041

[18]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[19]

Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

[20]

Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]