November  2015, 20(9): 3131-3163. doi: 10.3934/dcdsb.2015.20.3131

Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models

1. 

Instituto Superior de Engenharia de Lisboa - ISEL, ADM and CEAUL, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa

2. 

INSA, University of Toulouse, 135 Avenue du Rangueil, 31077 Toulouse

3. 

LAAS-CNRS, INSA, University of Toulouse, 7 Avenue du Colonel Roche, 31077 Toulouse

Received  October 2014 Revised  June 2015 Published  September 2015

This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called ``box-within-a-box'' type. The double big bang bifurcations are related to the existence of flip codimension--2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Citation: J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131
References:
[1]

W. C. Allee, Animal Aggregations,, University of Chicago Press, (1931).   Google Scholar

[2]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, Am. Inst. of Phys., 1124 (2009), 3.   Google Scholar

[3]

S. M. Aleixo and J. L. Rocha, Generalized models from Beta(p,2) densities with strong Allee effect: Dynamical approach,, J. Comput. Inf. Technol., 20 (2012), 201.  doi: 10.2498/cit.1002098.  Google Scholar

[4]

V. Avrutin, G. Wackenhut and M. Schanz, On dynamical systems with piecewise defined system functions,, in Proc. Int. Conf. Tools for Mathematical Modelling (Mathtols'99), 4 (1999), 4.   Google Scholar

[5]

V. Avrutin and M. Schanz, Multi-parametric bifurcations in a scalar piecewise-linear map,, Nonlinearity, 19 (2006), 531.  doi: 10.1088/0951-7715/19/3/001.  Google Scholar

[6]

V. Avrutin, M. Schanz and S. Banerjee, Multi-parametric bifurcations in a piecewise-linear discontinuous map,, Nonlinearity, 19 (2006), 1875.  doi: 10.1088/0951-7715/19/8/007.  Google Scholar

[7]

V. Avrutin, A. Granados and M. Schanz, Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional map,, Nonlinearity, 24 (2011), 2575.  doi: 10.1088/0951-7715/24/9/012.  Google Scholar

[8]

J.-P. Carcasses, Sur Quelques Structures Complexes de Bifurcations de Systemes Dynamiques,, Doctorat de L'Universite Paul Sabatier, (1990).   Google Scholar

[9]

B. Dennis, Allee effects: Population growth, critical density and the chance of extinction,, Nat. Res. Mod., 3 (1989), 481.   Google Scholar

[10]

S. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, J. Bio. Dyn., 4 (2010), 397.  doi: 10.1080/17513750903377434.  Google Scholar

[11]

D. Fournier-Prunaret, The bifurcation structure of a family of degree one circle endomorphisms,, Int. J. Bifurc. Chaos, 1 (1991), 823.  doi: 10.1142/S0218127491000609.  Google Scholar

[12]

H. Fujikawa, A. Kai and S. Morozomi, A new logistic model for Escherichia coli growth at constant and dynamic temperatures,, Food Microbiol., 21 (2004), 501.  doi: 10.1016/j.fm.2004.01.007.  Google Scholar

[13]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, J. Econ. Behav. Organ, 80 (2011), 153.  doi: 10.1016/j.jebo.2011.03.004.  Google Scholar

[14]

L. Gardini, V. Avrutin and I. Sushko, Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414500242.  Google Scholar

[15]

M. Gyllenberg, A. V. Osipov and G. Soderbacka, Bifurcation analysis of a metapopulation model with sources and sinks,, J. Nonlinear Sci., 6 (1996), 329.  doi: 10.1007/BF02433474.  Google Scholar

[16]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.  doi: 10.1007/s10144-009-0152-6.  Google Scholar

[17]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.   Google Scholar

[18]

A. K. Laird, S. A. Tyler and A. D. Barton, Dynamics of normal growth,, Growth, 29 (1965), 233.   Google Scholar

[19]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theor. Popul. Biol., 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[20]

A. S. Martinez, R. S. González and C. A. S. Terçariol, Continuous growth models in terms of generalized logarithm and exponential functions,, Physica A, 387 (2008), 5679.  doi: 10.1016/j.physa.2008.06.015.  Google Scholar

[21]

M. Marusić and Z. Bajzer, Generalized two-parameter equation of growth,, J. Math. Anal. Appl., 179 (1993), 446.  doi: 10.1006/jmaa.1993.1361.  Google Scholar

[22]

W. Melo and S. van Strien, One-Dimensional Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[23]

C. Mira, Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,, World Scientific, (1987).  doi: 10.1142/0413.  Google Scholar

[24]

C. Mira, On some codimension three bifurcations occuring in maps. Spring area-crossroad area transitions,, in Proc. European Conference on Iteration Theory (ECIT 1991), (1991), 168.   Google Scholar

[25]

C. Mira, L. Gardini, A. Barugola and J.-C. Cathala, Chaotic Dynamics in Two-Dimensional Noninvertible Maps,, World Scientific, (1996).  doi: 10.1142/9789812798732.  Google Scholar

[26]

C. Mira and L. Gardini, From the box-within-a-box bifurcation organization to the Julia set. Part I: Revisited properties of the sets generated by a quadratic complex map with a real parameter},, Int. J. Bifurc. Chaos, 19 (2009), 281.  doi: 10.1142/S0218127409022877.  Google Scholar

[27]

A. d'Onofrio, A. Fasano and B. Monechi, A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth,, Math. Biosciences, 230 (2011), 45.  doi: 10.1016/j.mbs.2011.01.001.  Google Scholar

[28]

D. D. Pestana, S. M. Aleixo and J. L. Rocha, Regular variation, paretian distributions, and the interplay of light and heavy tails in the fractality of asymptotic models,, in Chaos Theory: Modeling, (2011), 309.  doi: 10.1142/9789814350341_0036.  Google Scholar

[29]

J. L. Rocha and S. M. Aleixo, An extension of gompertzian growth dynamics: Weibull and Fréchet models,, Math. Biosci. Eng., 10 (2013), 379.  doi: 10.3934/mbe.2013.10.379.  Google Scholar

[30]

J. L. Rocha, D. Fournier-Prunaret and A.-K. Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 2397.  doi: 10.3934/dcdsb.2013.18.2397.  Google Scholar

[31]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 783.  doi: 10.3934/dcdsb.2013.18.783.  Google Scholar

[32]

J. L. Rocha, D. Fournier-Prunaret and A.-K. Taha, Big bang bifurcations and Allee effect in Blumberg's dynamics,, Nonlinear Dyn., 77 (2014), 1749.  doi: 10.1007/s11071-014-1415-0.  Google Scholar

[33]

J. L. Rocha, A.-K. Taha and D. Fournier-Prunaret, Symbolic dynamics and big bang bifurcation in Weibull-Gompertz-Fréchet's growth models,, Appl. Math. Inf. Sci., 9 (2015), 2377.  doi: 10.12785/amis/090520.  Google Scholar

[34]

S. Schreiber, Chaos and population disappearances in simple ecological models,, J. Math. Biol., 42 (2001), 239.  doi: 10.1007/s002850000070.  Google Scholar

[35]

S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[36]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-Dimensional Maps,, Kluwer Academic Publishers, (1997).  doi: 10.1007/978-94-015-8897-3.  Google Scholar

[37]

D. Singer, Stable orbits and bifurcations of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.  doi: 10.1137/0135020.  Google Scholar

[38]

A. Tsoularis and J. Wallace, Analysis of logistic growth models,, Math. Biosci., 179 (2002), 21.  doi: 10.1016/S0025-5564(02)00096-2.  Google Scholar

[39]

M. E. Turner, E. L. Bradley, K. A. Kirk and K. M. Pruitt, A theory of growth,, Math. Biosci., 29 (1976), 367.  doi: 10.1016/0025-5564(76)90112-7.  Google Scholar

[40]

E. Uleri, S. Beltrami, J. Gordon, A. Dolei and I. K. Sariyer, Extinction of tumor antigen expression by SF2/ASF in JCV-transformed cells,, Genes Cancer, 2 (2011), 728.  doi: 10.1177/1947601911424578.  Google Scholar

show all references

References:
[1]

W. C. Allee, Animal Aggregations,, University of Chicago Press, (1931).   Google Scholar

[2]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, Am. Inst. of Phys., 1124 (2009), 3.   Google Scholar

[3]

S. M. Aleixo and J. L. Rocha, Generalized models from Beta(p,2) densities with strong Allee effect: Dynamical approach,, J. Comput. Inf. Technol., 20 (2012), 201.  doi: 10.2498/cit.1002098.  Google Scholar

[4]

V. Avrutin, G. Wackenhut and M. Schanz, On dynamical systems with piecewise defined system functions,, in Proc. Int. Conf. Tools for Mathematical Modelling (Mathtols'99), 4 (1999), 4.   Google Scholar

[5]

V. Avrutin and M. Schanz, Multi-parametric bifurcations in a scalar piecewise-linear map,, Nonlinearity, 19 (2006), 531.  doi: 10.1088/0951-7715/19/3/001.  Google Scholar

[6]

V. Avrutin, M. Schanz and S. Banerjee, Multi-parametric bifurcations in a piecewise-linear discontinuous map,, Nonlinearity, 19 (2006), 1875.  doi: 10.1088/0951-7715/19/8/007.  Google Scholar

[7]

V. Avrutin, A. Granados and M. Schanz, Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional map,, Nonlinearity, 24 (2011), 2575.  doi: 10.1088/0951-7715/24/9/012.  Google Scholar

[8]

J.-P. Carcasses, Sur Quelques Structures Complexes de Bifurcations de Systemes Dynamiques,, Doctorat de L'Universite Paul Sabatier, (1990).   Google Scholar

[9]

B. Dennis, Allee effects: Population growth, critical density and the chance of extinction,, Nat. Res. Mod., 3 (1989), 481.   Google Scholar

[10]

S. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, J. Bio. Dyn., 4 (2010), 397.  doi: 10.1080/17513750903377434.  Google Scholar

[11]

D. Fournier-Prunaret, The bifurcation structure of a family of degree one circle endomorphisms,, Int. J. Bifurc. Chaos, 1 (1991), 823.  doi: 10.1142/S0218127491000609.  Google Scholar

[12]

H. Fujikawa, A. Kai and S. Morozomi, A new logistic model for Escherichia coli growth at constant and dynamic temperatures,, Food Microbiol., 21 (2004), 501.  doi: 10.1016/j.fm.2004.01.007.  Google Scholar

[13]

L. Gardini, U. Merlone and F. Tramontana, Inertia in binary choices: Continuity breaking and big-bang bifurcation points,, J. Econ. Behav. Organ, 80 (2011), 153.  doi: 10.1016/j.jebo.2011.03.004.  Google Scholar

[14]

L. Gardini, V. Avrutin and I. Sushko, Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414500242.  Google Scholar

[15]

M. Gyllenberg, A. V. Osipov and G. Soderbacka, Bifurcation analysis of a metapopulation model with sources and sinks,, J. Nonlinear Sci., 6 (1996), 329.  doi: 10.1007/BF02433474.  Google Scholar

[16]

A. M. Kramer, B. Dennis, A. M. Liebhold and J. M. Drake, The evidence for Allee effects,, Popul. Ecol., 51 (2009), 341.  doi: 10.1007/s10144-009-0152-6.  Google Scholar

[17]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.   Google Scholar

[18]

A. K. Laird, S. A. Tyler and A. D. Barton, Dynamics of normal growth,, Growth, 29 (1965), 233.   Google Scholar

[19]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theor. Popul. Biol., 43 (1993), 141.  doi: 10.1006/tpbi.1993.1007.  Google Scholar

[20]

A. S. Martinez, R. S. González and C. A. S. Terçariol, Continuous growth models in terms of generalized logarithm and exponential functions,, Physica A, 387 (2008), 5679.  doi: 10.1016/j.physa.2008.06.015.  Google Scholar

[21]

M. Marusić and Z. Bajzer, Generalized two-parameter equation of growth,, J. Math. Anal. Appl., 179 (1993), 446.  doi: 10.1006/jmaa.1993.1361.  Google Scholar

[22]

W. Melo and S. van Strien, One-Dimensional Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[23]

C. Mira, Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,, World Scientific, (1987).  doi: 10.1142/0413.  Google Scholar

[24]

C. Mira, On some codimension three bifurcations occuring in maps. Spring area-crossroad area transitions,, in Proc. European Conference on Iteration Theory (ECIT 1991), (1991), 168.   Google Scholar

[25]

C. Mira, L. Gardini, A. Barugola and J.-C. Cathala, Chaotic Dynamics in Two-Dimensional Noninvertible Maps,, World Scientific, (1996).  doi: 10.1142/9789812798732.  Google Scholar

[26]

C. Mira and L. Gardini, From the box-within-a-box bifurcation organization to the Julia set. Part I: Revisited properties of the sets generated by a quadratic complex map with a real parameter},, Int. J. Bifurc. Chaos, 19 (2009), 281.  doi: 10.1142/S0218127409022877.  Google Scholar

[27]

A. d'Onofrio, A. Fasano and B. Monechi, A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth,, Math. Biosciences, 230 (2011), 45.  doi: 10.1016/j.mbs.2011.01.001.  Google Scholar

[28]

D. D. Pestana, S. M. Aleixo and J. L. Rocha, Regular variation, paretian distributions, and the interplay of light and heavy tails in the fractality of asymptotic models,, in Chaos Theory: Modeling, (2011), 309.  doi: 10.1142/9789814350341_0036.  Google Scholar

[29]

J. L. Rocha and S. M. Aleixo, An extension of gompertzian growth dynamics: Weibull and Fréchet models,, Math. Biosci. Eng., 10 (2013), 379.  doi: 10.3934/mbe.2013.10.379.  Google Scholar

[30]

J. L. Rocha, D. Fournier-Prunaret and A.-K. Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 2397.  doi: 10.3934/dcdsb.2013.18.2397.  Google Scholar

[31]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 783.  doi: 10.3934/dcdsb.2013.18.783.  Google Scholar

[32]

J. L. Rocha, D. Fournier-Prunaret and A.-K. Taha, Big bang bifurcations and Allee effect in Blumberg's dynamics,, Nonlinear Dyn., 77 (2014), 1749.  doi: 10.1007/s11071-014-1415-0.  Google Scholar

[33]

J. L. Rocha, A.-K. Taha and D. Fournier-Prunaret, Symbolic dynamics and big bang bifurcation in Weibull-Gompertz-Fréchet's growth models,, Appl. Math. Inf. Sci., 9 (2015), 2377.  doi: 10.12785/amis/090520.  Google Scholar

[34]

S. Schreiber, Chaos and population disappearances in simple ecological models,, J. Math. Biol., 42 (2001), 239.  doi: 10.1007/s002850000070.  Google Scholar

[35]

S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theor. Popul. Biol., 64 (2003), 201.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[36]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-Dimensional Maps,, Kluwer Academic Publishers, (1997).  doi: 10.1007/978-94-015-8897-3.  Google Scholar

[37]

D. Singer, Stable orbits and bifurcations of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.  doi: 10.1137/0135020.  Google Scholar

[38]

A. Tsoularis and J. Wallace, Analysis of logistic growth models,, Math. Biosci., 179 (2002), 21.  doi: 10.1016/S0025-5564(02)00096-2.  Google Scholar

[39]

M. E. Turner, E. L. Bradley, K. A. Kirk and K. M. Pruitt, A theory of growth,, Math. Biosci., 29 (1976), 367.  doi: 10.1016/0025-5564(76)90112-7.  Google Scholar

[40]

E. Uleri, S. Beltrami, J. Gordon, A. Dolei and I. K. Sariyer, Extinction of tumor antigen expression by SF2/ASF in JCV-transformed cells,, Genes Cancer, 2 (2011), 728.  doi: 10.1177/1947601911424578.  Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[4]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[7]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[8]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[9]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[10]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[11]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[12]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[13]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[14]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[15]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[16]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[17]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[18]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[19]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[20]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (9)

[Back to Top]