• Previous Article
    Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells
  • DCDS-B Home
  • This Issue
  • Next Article
    Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals
November  2015, 20(9): 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

New asymptotic analysis method for phase field models in moving boundary problem with surface tension

1. 

Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120, United States, United States

Received  October 2013 Revised  May 2015 Published  September 2015

In this paper, we give an asymptotic analysis of the phase field Allen-Cahn and Cahn-Hilliard models of free surfaces with surface tension. Unlike the traditional approach that approximates the solution by the so-called matched asymptotic expansion involving outer expansion, inner expansion and matching, our new approach utilizes a uniform double asymptotic expansion to expand the whole phase field function directly. Although the main result is not new, we would like to emphasize that we derive the result under a uniform double asymptotic expansion. Thus, in this paper the detailed structure of the phase field functions in the equilibrium state is obtained, and the consistency of the phase field models with the corresponding sharp interface models is discussed, including the free surface Allen-Cahn model, Cahn-Hilliard model, and the Allen-Cahn model with volume constraint. The explicit asymptotic expansion of the phase field function reveals rich details of its structures. Moreover, it nicely explains some unusual phenomena we observed in numerical experiments. The theory introduced in this paper can be applied to guide the future modeling and simulation of other moving boundary problems by phase field models.
Citation: Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185
References:
[1]

N. Alikakos, P. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[2]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1085.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

J. F. Blowey and C. M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems,, Degenerate Diffusions, 47 (1993), 19.  doi: 10.1007/978-1-4612-0885-3_2.  Google Scholar

[4]

K. Brakke, The Motion of a Surface by Its Mean Curvature,, Vol. 20. Princeton: Princeton University Press, (1978).   Google Scholar

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Third edition. Texts in Applied Mathematics, (2008).  doi: 10.1007/978-1-4757-4338-8.  Google Scholar

[6]

G. Caginalp, The Limiting Behavior of a Free Boundary in the Phase Field Model,, Carnegie-Mellon Research Report 82-5, (1982), 82.   Google Scholar

[7]

G. Caginalp, Mathematical models of phase boundaries,, Material Instability in Continuum Problems and Related Mathematical Problems, (1988), 35.   Google Scholar

[8]

G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations,, Phys. Rev. A, 39 (1989), 5887.  doi: 10.1103/PhysRevA.39.5887.  Google Scholar

[9]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, Euro. J. of Applied Mathematics, 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[10]

G. Caginalp and P. C. Fife, Elliptic problems involving phase boundaries satisfying a curvature condition,, IMA J. Appl. Math., 38 (1987), 195.  doi: 10.1093/imamat/38.3.195.  Google Scholar

[11]

J. Cahn and J. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[12]

G. Caginalp and Y. Nishiura, The existence of traveling waves for phase field equations and convergence to sharp interface models in sigular limit,, Quart. J. Appl. Math., 49 (1991), 147.   Google Scholar

[13]

J. Cahn and A. Novick-Cohen, Limiting motion for an Allen-Cahn/Cahn-Hilliard system,, Free boundary problems theory and applications (Zakopane 1995), 363 (1996), 89.  doi: 10.2307/1513327.  Google Scholar

[14]

X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation,, J. Diff. Geom., 44 (1996), 262.   Google Scholar

[15]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[16]

X. Chen, Rigorous verifications of formal asymptotic expansions,, Proceedings of the International Conference onAsymptotics in Nonlinear Diffusive Systems, 8 (1998), 9.   Google Scholar

[17]

X. Chen and C. Elliott, Asymptotics for a parabolic double obstacle problem,, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 444 (1994), 429.  doi: 10.1098/rspa.1994.0030.  Google Scholar

[18]

X. Chen, C. M. Elliott, A. Gardiner and J. J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.   Google Scholar

[19]

P. G. Ciarlet, The Finite Element Method for Ellipic Problems,, Elsevier, (1978).   Google Scholar

[20]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy,, Numer. Math., 63 (1992), 39.  doi: 10.1007/BF01385847.  Google Scholar

[21]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 58 (1975), 842.   Google Scholar

[22]

Q. Du, C. Liu, R. Ryham and X. Wang, Phase field modeling of the spontaneous curvature effect in cell membranes,, Comm. Pure. Appl. Anal., 4 (2005), 537.  doi: 10.3934/cpaa.2005.4.537.  Google Scholar

[23]

Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membrane,, Journal of Computational Physics, 198 (2004), 450.  doi: 10.1016/j.jcp.2004.01.029.  Google Scholar

[24]

Q. Du, C. Liu and X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions,, Journal of Computational Physics, 212 (2006), 757.  doi: 10.1016/j.jcp.2005.07.020.  Google Scholar

[25]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of pahse transition,, SIAM J. Numer. Anal., 28 (1991), 1310.  doi: 10.1137/0728069.  Google Scholar

[26]

C. M. Elliott, Approximation of curvature dependent interface motion,, The state of the art in numerical analysis (York, 63 (1997), 407.   Google Scholar

[27]

C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation,, IMA J. Appl. Math., 38 (1987), 97.  doi: 10.1093/imamat/38.2.97.  Google Scholar

[28]

C. M. Elliott and D. A. French, A nonconforming finite-element method for the two dimensional Cahn-Hilliard equation,, SIAM J. Numer. Anal., 26 (1989), 884.  doi: 10.1137/0726049.  Google Scholar

[29]

C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation,, Numer. Math., 54 (1989), 575.  doi: 10.1007/BF01396363.  Google Scholar

[30]

C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[31]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097.  doi: 10.1002/cpa.3160450903.  Google Scholar

[32]

X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows,, Numer. Math., 94 (2003), 33.  doi: 10.1007/s00211-002-0413-1.  Google Scholar

[33]

P. Fife, Dynamics of Internal Layers and Diffusive Interfaces,, Vol. 53. Philadelphia: Society for Industrial and Applied Mathematics, (1988).  doi: 10.1137/1.9781611970180.  Google Scholar

[34]

D. A. French and S. Jensen, Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems,, IMA J. Numer. Anal., 14 (1994), 421.  doi: 10.1093/imanum/14.3.421.  Google Scholar

[35]

G. Fusco, A geometric approach to the dynamics of $u_t = \epsilon^2u_{x x} +f(u)$ for small $\epsilon$,, Problems involving change of type., 359 (1990), 53.  doi: 10.1007/3-540-52595-5_85.  Google Scholar

[36]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.   Google Scholar

[37]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital. B, 14 (1977), 285.   Google Scholar

[38]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Ration. Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[39]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[40]

R. H. Nochetto and C. Verdi, Combined effect of explicit time-stepping and quadrature for curvature driven flows,, Numer. Math., 74 (1996), 105.  doi: 10.1007/s002110050210.  Google Scholar

[41]

R. H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature-driven interfaces,, SIAM J. Numer. Anal., 34 (1997), 490.  doi: 10.1137/S0036142994269526.  Google Scholar

[42]

R. Pego, Front migration in the nonlinear Cahn-Hilliard equation,, roc. Roy. Soc. London Ser. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[43]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.  doi: 10.1007/BF00253122.  Google Scholar

[44]

Y. Sun and C. Beckermann, Sharp interface tracking using the phase-field equation,, J. Compput. Phys., 220 (2007), 626.  doi: 10.1016/j.jcp.2006.05.025.  Google Scholar

[45]

J. Van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,, J. Sta. Phys., 20 (1979), 197.  doi: 10.1007/BF01011513.  Google Scholar

[46]

X. Wang, Astmptotic analysis of phase field formulations Of bending elasticity models,, SIAM J. Math. Anal., 39 (2008), 1367.  doi: 10.1137/060663519.  Google Scholar

show all references

References:
[1]

N. Alikakos, P. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[2]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1085.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

J. F. Blowey and C. M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems,, Degenerate Diffusions, 47 (1993), 19.  doi: 10.1007/978-1-4612-0885-3_2.  Google Scholar

[4]

K. Brakke, The Motion of a Surface by Its Mean Curvature,, Vol. 20. Princeton: Princeton University Press, (1978).   Google Scholar

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Third edition. Texts in Applied Mathematics, (2008).  doi: 10.1007/978-1-4757-4338-8.  Google Scholar

[6]

G. Caginalp, The Limiting Behavior of a Free Boundary in the Phase Field Model,, Carnegie-Mellon Research Report 82-5, (1982), 82.   Google Scholar

[7]

G. Caginalp, Mathematical models of phase boundaries,, Material Instability in Continuum Problems and Related Mathematical Problems, (1988), 35.   Google Scholar

[8]

G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations,, Phys. Rev. A, 39 (1989), 5887.  doi: 10.1103/PhysRevA.39.5887.  Google Scholar

[9]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, Euro. J. of Applied Mathematics, 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[10]

G. Caginalp and P. C. Fife, Elliptic problems involving phase boundaries satisfying a curvature condition,, IMA J. Appl. Math., 38 (1987), 195.  doi: 10.1093/imamat/38.3.195.  Google Scholar

[11]

J. Cahn and J. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[12]

G. Caginalp and Y. Nishiura, The existence of traveling waves for phase field equations and convergence to sharp interface models in sigular limit,, Quart. J. Appl. Math., 49 (1991), 147.   Google Scholar

[13]

J. Cahn and A. Novick-Cohen, Limiting motion for an Allen-Cahn/Cahn-Hilliard system,, Free boundary problems theory and applications (Zakopane 1995), 363 (1996), 89.  doi: 10.2307/1513327.  Google Scholar

[14]

X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation,, J. Diff. Geom., 44 (1996), 262.   Google Scholar

[15]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[16]

X. Chen, Rigorous verifications of formal asymptotic expansions,, Proceedings of the International Conference onAsymptotics in Nonlinear Diffusive Systems, 8 (1998), 9.   Google Scholar

[17]

X. Chen and C. Elliott, Asymptotics for a parabolic double obstacle problem,, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 444 (1994), 429.  doi: 10.1098/rspa.1994.0030.  Google Scholar

[18]

X. Chen, C. M. Elliott, A. Gardiner and J. J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation,, Appl. Anal., 69 (1998), 47.   Google Scholar

[19]

P. G. Ciarlet, The Finite Element Method for Ellipic Problems,, Elsevier, (1978).   Google Scholar

[20]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy,, Numer. Math., 63 (1992), 39.  doi: 10.1007/BF01385847.  Google Scholar

[21]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 58 (1975), 842.   Google Scholar

[22]

Q. Du, C. Liu, R. Ryham and X. Wang, Phase field modeling of the spontaneous curvature effect in cell membranes,, Comm. Pure. Appl. Anal., 4 (2005), 537.  doi: 10.3934/cpaa.2005.4.537.  Google Scholar

[23]

Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membrane,, Journal of Computational Physics, 198 (2004), 450.  doi: 10.1016/j.jcp.2004.01.029.  Google Scholar

[24]

Q. Du, C. Liu and X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions,, Journal of Computational Physics, 212 (2006), 757.  doi: 10.1016/j.jcp.2005.07.020.  Google Scholar

[25]

Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of pahse transition,, SIAM J. Numer. Anal., 28 (1991), 1310.  doi: 10.1137/0728069.  Google Scholar

[26]

C. M. Elliott, Approximation of curvature dependent interface motion,, The state of the art in numerical analysis (York, 63 (1997), 407.   Google Scholar

[27]

C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation,, IMA J. Appl. Math., 38 (1987), 97.  doi: 10.1093/imamat/38.2.97.  Google Scholar

[28]

C. M. Elliott and D. A. French, A nonconforming finite-element method for the two dimensional Cahn-Hilliard equation,, SIAM J. Numer. Anal., 26 (1989), 884.  doi: 10.1137/0726049.  Google Scholar

[29]

C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation,, Numer. Math., 54 (1989), 575.  doi: 10.1007/BF01396363.  Google Scholar

[30]

C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[31]

L. Evans, H. Soner and P. Souganidis, Phase transitions and generalized motion by mean curvature,, Comm. Pure Appl. Math., 45 (1992), 1097.  doi: 10.1002/cpa.3160450903.  Google Scholar

[32]

X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows,, Numer. Math., 94 (2003), 33.  doi: 10.1007/s00211-002-0413-1.  Google Scholar

[33]

P. Fife, Dynamics of Internal Layers and Diffusive Interfaces,, Vol. 53. Philadelphia: Society for Industrial and Applied Mathematics, (1988).  doi: 10.1137/1.9781611970180.  Google Scholar

[34]

D. A. French and S. Jensen, Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems,, IMA J. Numer. Anal., 14 (1994), 421.  doi: 10.1093/imanum/14.3.421.  Google Scholar

[35]

G. Fusco, A geometric approach to the dynamics of $u_t = \epsilon^2u_{x x} +f(u)$ for small $\epsilon$,, Problems involving change of type., 359 (1990), 53.  doi: 10.1007/3-540-52595-5_85.  Google Scholar

[36]

T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature,, J. Differential Geom., 38 (1993), 417.   Google Scholar

[37]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital. B, 14 (1977), 285.   Google Scholar

[38]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Ration. Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[39]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces,, Trans. Amer. Math. Soc., 347 (1995), 1533.  doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[40]

R. H. Nochetto and C. Verdi, Combined effect of explicit time-stepping and quadrature for curvature driven flows,, Numer. Math., 74 (1996), 105.  doi: 10.1007/s002110050210.  Google Scholar

[41]

R. H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature-driven interfaces,, SIAM J. Numer. Anal., 34 (1997), 490.  doi: 10.1137/S0036142994269526.  Google Scholar

[42]

R. Pego, Front migration in the nonlinear Cahn-Hilliard equation,, roc. Roy. Soc. London Ser. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[43]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.  doi: 10.1007/BF00253122.  Google Scholar

[44]

Y. Sun and C. Beckermann, Sharp interface tracking using the phase-field equation,, J. Compput. Phys., 220 (2007), 626.  doi: 10.1016/j.jcp.2006.05.025.  Google Scholar

[45]

J. Van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,, J. Sta. Phys., 20 (1979), 197.  doi: 10.1007/BF01011513.  Google Scholar

[46]

X. Wang, Astmptotic analysis of phase field formulations Of bending elasticity models,, SIAM J. Math. Anal., 39 (2008), 1367.  doi: 10.1137/060663519.  Google Scholar

[1]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[2]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277

[3]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[4]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[7]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[8]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[9]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[10]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[11]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[14]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[17]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]